
https://doi.org/10.1007/s10664-020-09842-7

Mining the use of higher-order functions:

An exploratory study on Scala programs

Yisen Xu1 · FanWu2 ·Xiangyang Jia1 · Lingbo Li2 · Jifeng Xuan1

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
A higher-order function takes one or more functions as inputs or outputs to support the gen-
erality of function definitions. In modern programming languages, higher-order functions
are designed as a feature to enhance usability and scalability. Abstracting higher-order func-
tions from existing functions decreases the number of similar functions and improves the
code reuse. However, due to the complexity, defining and calling higher-order functions are
not widely used in practice. In this paper, we investigate the use of higher-order functions
in Scala programs. We collected 8,285 higher-order functions from 35 Scala projects in
GitHub with the most stars and conducted an exploratory study via answering five research
questions of using higher-order functions, including the data scale, the definition types,
the definition distribution, the factor that correlates with the function calls, and the devel-
oper contribution. Our study mainly shows five empirical results about the common use of
higher-order functions in Scala programs. Our findings are listed as follows. (1) Among 35
Scala projects, 6.84% of functions are defined as higher-order functions on average and the
average calls per function show that higher-order functions are called more frequently than
first-order functions. (2) In all higher-order functions in the study, 87.35% of definitions of
higher-order functions and 90.66% of calls belong to the type that only takes functions as
parameters. (3) Three measurements (including lines of executable code, Cyclomatic com-
plexity, and warnings in the code style) in higher-order functions are lower than those of
first-order functions. (4) Regression analysis on all projects suggests that the number of
calling higher-order functions highly correlates with the Cyclomatic complexity. (5) In all
projects in the study, 43.82% calls of higher-order functions are written by the same devel-
opers who have defined the functions and results show that top 20% authors of higher-order
functions favor defining or calling higher-order functions than first-order functions. This
study can be viewed as a preliminary result to understand the use of higher-order functions
and to motivate further investigation in Scala programs.

This article belongs to the Topical Collection: Software Applications (NASAC)

Communicated by: Richard Paige, Jordi Cabot and Neil Ernst

� Jifeng Xuan
jxuan@whu.edu.cn

Extended author information available on the last page of the article.

Empirical Software Engineering (2020) 25:4547–4584

Published online: 4 September 2020



Keywords Scala programs · Higher-order functions · GitHub · Exploratory study ·
Correlation analysis · Code reuse

1 Introduction

A higher-order function is a function that takes one or more functions as parameters or
returns a function as a result. The concept of higher-order functions is derived from math-
ematics and can be intuitively considered as a function of functions. Using a higher-order
function can increase the generality of source code and reduce the redundancy by discard-
ing functions that share the same functionality without using the same types of parameters.
Abstracting higher-order functions from existing functions can be further leveraged to sup-
port automated code reuse and code generation via reducing the search space of potential
functions.

Many program languages support programming with higher-order functions, such as
C++ 11, Java 8, Python, and Scala. Using higher-order functions eases the design and
the implementation of programs. However, defining and calling a higher-order function is
complex since functions are introduced as parameters or returned results. Such complexity
prevents higher-order functions from being widely used.

Developers employ higher-order functions to enhance the design of source code in the
following ways. First, common patterns are encapsulated into higher-order functions to
improve reusability in source code. The design of higher-order functions is the abstraction
of common programming patterns by taking functions as the input or returning functions
as the output (Richmond et al. 2018). Second, higher-order functions can be leveraged to
implement polymorphism in source code. Polymorphism is the ability of the same behavior
to have many different manifestations or forms (Cardelli and Wegner 1985). For instance,
the mapping function of a collection in Scala programs, such as Array.map(), is a
higher-order function, which supports polymorphism by receiving different functions as
parameters.1 Third, for complex calculations like high-precision control systems, develop-
ers can use higher-order functions to keep the source code of calculations simple and clear.
For example, Bassoy and Schatz (2018) reported that the tensor data with a non-hierarchical
storage format and an arbitrary number of dimensions can be handled by the recursive
multi-index algorithms implemented in higher-order functions.

1.1 Background

Among programming languages that support higher-order functions, we focus on the Scala
language in this paper. Scala is a multi-paradigm programming language that provides the
support of functional programming and a strong static type system (Odersky et al. 2004).
We chose to study higher-order functions in Scala programs due to the following two
reasons. On the one hand, different from purely functional programming languages like
Standard ML and Haskell, Scala combines object-oriented and functional programming into
one high-level language (Scala 2020). The object-oriented features make Scala widely used
in different domains (Nystrom 2017; Kroll et al. 2017). For example, Twitter decided to
migrate its back-end programs from Ruby (an object-oriented programming language) to

1Array.map() in Scala, http://www.scala-lang.org/api/2.12.8/scala/Array.html#map[B](f:A=〉B):
Array[B].

Empirical Software Engineering (2020) 25:4547–45844548



Scala (HackerNews 2009). On the other hand, different from dynamic programming lan-
guages like Python, Scala is a static type-system language like Java. The static type system
enables static and concise program analysis of Scala programs. The Scala code can be com-
piled into Java bytecode. This design enables the compiled code to be directly executed on
the Java virtual machine. Using higher-order functions in Scala can improve the abstraction
and simplification of function design, which is not originally supported in Java.2

The design of Scala contains the implementation of generics, the forced use of object-
oriented programming, and the implementation of limited support for component abstrac-
tion and composition (Karlsson and Haller 2018). Such design makes the Scala language
widely used in many development scenarios, e.g., the rapid web development and the con-
struction of distributed systems. For instance, Nystrom (Nystrom 2017) has presented a
Scala framework for experimenting with super-compilation techniques; Kroll et al. (2017)
have proposed the Scala platform that conducts a straightforward and simplified translation
from a formal specification to source code.

Scala shares many features of functional programming languages, including currying,
type inference, and immutability. A higher-order function takes functions as input or returns
a function as output. The input or output function can be any function, including higher-
order functions. If a function serves as input, it abstracts the common patterns of potential
parameters of the higher-order function; if a function serves as output, it increases the diver-
sity of the returned results. Meanwhile, a higher-order function can have both functions
as parameters and functions as returned results. The flexible use of functions in Scala can
decrease readability (Selakovic et al. 2018). For instance, if a higher-order function returns
a function, the type of the returned function can be omitted from the definition of this
higher-order function.

Figure 1 shows an excerpt of a real-world higher-order function readModifiers()
in Project lampepfl/dotty.3 The higher-order function readModifiers(), locat-
ing in dotty.tools.dotc.core.tasty.TreeUnpickler, is designed to deseri-
alize several modifiers of an Abstract Syntax Tree (AST) into a triplet, which contains a set
of flags, a list of annotations, and a boundary symbol. A modifier of an AST is a qualifier
for the access, such as private or protected for a variable; a boundary symbol is the
scope of the accessible variable, e.g., a package name or a class name of the variable. A flag
is a value of a long integer that reflects a particular modifier; then the variable flags at
Line 8 indicates all the modifiers of an AST.

The definition of this higher-order function contains five input parameters and a return
type. The parameters are end, readAnnot, readWithin, defaultWithin, and ctx.
Among these five parameters, two parameters, end at Line 2 and defaultWithin at
Line 5, are objects of Class Addr and Class WithinType, respectively; another two
parameters readAnnot at Line 3 and readWithin at Line 4 are function parame-
ters: the function of readAnnot: Context => Symbol => AnnotType and the
function of readWithin: Context => WithinType; the last parameter ctx at
Line 6 belongs to the function currying that transforms a function with multiple param-
eters into a sequence of functions, where the implicit keyword indicates that the
parameter is optional.4 As shown in Fig. 1, the second parameter readAnnot at Line
3 of the function readModifiers() is a higher-order function, which receives a

2Java supports higher-order functions since its Version 8.0 in 2014.
3Project dotty, http://github.com/lampepfl/dotty.
4Scala currying, http://docs.scala-lang.org/tour/currying.html.

Empirical Software Engineering (2020) 25:4547–4584 4549



Fig. 1 Excerpt of a real-world higher-order function readModifiers() from Class
dotty.tools.dotc.core.tasty.TreeUnpickler in Project lampepfl/dotty. The defini-
tion of this function is to read a modifier list into a triplet of flags, annotations, and a boundary symbol

Context object as input and returns an anonymous function Symbol => AnnotType
and the function Symbol => AnnotType takes a Symbol object as a parameter and
returns an AnnotType object. This parameter is called at Line 26. The third parameter
readWithin at Line 4 is a first-order function, which receives a Context object as input
and returns a WithinType object. This parameter is called at Line 21 and Line 24.

The return type of the function readModifiers() at Line 7 is a triplet of flags,
annotations and a boundary symbol. In the return type, the second return value is a list of
functions; that is, List[Symbol => AnnotType] denotes a list of functions, each of
which takes a Symbol object as input and returns an AnnotType object as output. The
return statement of the function readModifiers() locates at Line 31, which returns an
instance of the above return type at Line 7.

1.2 Findings and Contributions

Higher-order functions have been applied in the development of many applications (Wester
and Kuper 2013; Brachthȧuser and Schuster 2017; Nystrom 2017). However, there is no

Empirical Software Engineering (2020) 25:4547–45844550



prior study that investigates the use of higher-order functions. For instance, in a mature
project, how many functions are higher-order functions? Do developers use higher-order
functions in the same way as the other functions? Who has defined or called the higher-
order function? Which factor correlates with the number of function calls? In this paper, we
extracted data of 35 popular Scala projects with the most stars from GitHub and conducted
an exploratory study on understanding the use of higher-order functions in Scala programs.

We leveraged static analysis to extract 8,285 definitions and 22,579 calls of higher-order
functions by 521 developers from 1,326.3k executable lines of Scala code. Our study is to
answer five research questions.

– RQ1. How many higher-order functions are there in Scala projects? We show
basic statistics on the higher-order functions in 35 Scala projects and show the exis-
tence of higher-order functions. Among 35 Scala projects in our study, 6.84% of
functions are defined as higher-order functions in average while higher-order functions
are called more frequently than first-order functions according to the average calls per
function.

– RQ2. How are higher-order functions defined? We briefly categorize the defini-
tions of higher-order functions according to whether the argument list or the returned
value contains functions. Higher-order functions that take functions as parameters are
the most common type of definitions. A higher-order function that takes at least one
function as a parameter and returns functions is not frequently defined and called.

– RQ3. How do definitions of higher-order functions distribute? We quantify defini-
tions of higher-order functions with three measurements, including LoC, complexity,
and warnings in code style. The average and the standard deviation values show that
the measurement values of higher-order functions are lower than those of first-order
functions.

– RQ4. Which factor correlates with the calls of higher-order functions? We fur-
ther analyze the factors that correlate with the calls of higher-order functions. We
build multivariate linear regression model between factors and the number of func-
tion calls of higher-order functions. The analysis suggests that the number of calls for
a higher-order function highly correlates with the Cyclomatic complexity. Results on
individual projects show that correlations with the number of executable lines of code
are positive in 29 projects; all correlations but one with the Cyclomatic complexity are
positive.

– RQ5. How do developers contribute to defining and calling higher-order func-
tions? We analyze the number of higher-order functions defined and called by each
developer. Among all calls of higher-order functions, 9894 (43.82%) calls are made
by the same developers who have defined the functions. Results suggest that top 20%
authors of higher-order functions favor defining or calling higher-order functions than
first-order functions.

This paper makes the following major contributions:

1. We mined 35 Scala projects with the most stars in GitHub and collected 8,285 higher-
order functions, which are contributed by 521 developers.

2. We empirically investigated the use of higher-order functions in Scala programs
and designed an exploratory study on using higher-order functions via answering
five research questions, including the data scale, the definition types, the defini-
tion distribution, the factor that correlates with the function calls, and the developer
contribution.

Empirical Software Engineering (2020) 25:4547–4584 4551



The rest of this paper is organized as follows. Section 2 presents the study setup, includ-
ing five research questions and the data preparation. Section 3 describes the results of our
exploratory study. Section 4 discusses the threats to the validity. Section 5 lists the related
work and Section 6 concludes.

2 Study Setup

In this section, we first present the data preparation of our study and then describe the design
of five research questions.

2.1 Data Preparation

Our study aims to understand the use of higher-order functions in Scala programs. We
mined 35 Scala projects and extracted data for further analysis, including function defini-
tions, calls, developers who have written the functions, and the function complexity.5 We
employed the static analysis tool SemanticDB to extract semantic structures, such as types
and function signatures. SemanticDB is a library suite for program analysis of Scala source
code.6 The main steps of data preparation are listed as follows.

Project selection We sorted all Scala projects in GitHub according to the stars.7 A project
with many stars indicates that the project is favored by developers because of the usage
and quality. We selected top-50 projects with the most stars. Since applying SemanticDB
to a project requires the compatible configuration of the project, we skipped 15 projects
that cannot be parsed by SemanticDB and kept the other 35 projects. In detail, 15 projects
were skipped: since SemanticDB can only support static analysis of Scala 2.11 or Scala
2.12, seven projects that are implemented in Scala 2.10 were skipped, including Projects
scala-js/scala-js, scala-native/scala-native, scalanlp/breeze,
spray/spray, pocorall/scaloid, monix/moinx, and coursier/coursier;
Project typelevel/spire was also skipped since the implementation of this project
is Scala 2.13; another five projects, apache/spark, intel-analytics/BigDL,
safeforce/TransmogrifAI, datastax/spark-cassandra-connector,
and GravityLabs/goose that are mixedly implemented with Scala and other program-
ming languages are skipped due to the failure of configuring with SemanticDB; we also
removed two projects fpinscala/fpinscala (a supplement material of practices in a
book) and scala-exercises/scala-exercises (exercises for many libraries of
Scala), since these projects are not real software projects. Table 1 lists a summary of 35
Scala projects in the study.

Function extraction We collected definitions and calls of functions via SemanticDB. We
filtered out the files that are not written in Scala. For each project, we used SemanticDB
to extract all the function definitions and identified whether there exists a function in the
input or the output. That is, we collected all the definitions of higher-order functions in each
project. SemanticDB can generate a semantic database that contains all classes, functions,

5The collected data in this study are publicly available, http://cstar.whu.edu.cn/p/scalahof/.
6SemanticDB, http://scalameta.org/docs/semanticdb/guide.html.
7Scala projects with stars, http://github.com/search?l=Scala&o=desc&q=scala&s=stars&type=Repositories,
accessed on September 1st, 2019.

Empirical Software Engineering (2020) 25:4547–45844552



Table 1 Summary of 35 Scala projects in GitHub in the study

Project Abbr. #Star LoC Project description

scala/scala scala 12.1k 143.6k The Scala programming
language

apache/predictionio predictionio 12.1k 20.3k Amachine learning frame-
work

playframework/playframework framework 11.3k 41.5k A web framework for
building scalable appli-
cations with Java and
Scala

akka/akka akka 10.3k 114.8k A tool for building concur-
rent and distributed appli-
cations

yahoo/kafka-manager kafka 8.0k 10.5k A tool for managing
Apache KafKa

gitbucket/gitbucket gitbucket 7.8k 19.1k AGit platform powered by
Scala

twitter/finagle finagle 7.3k 63.0k An extensible RPC system
for the Java JVM

ornicar/lila lila 5.8k 70.3k A free server for the online
chess game

rtyley/bfg-repo-cleaner bfg 5.7k 1.5k A simple and fast tool for
cleansing bad data out of
Git repository

gatling/gatling gatling 4.4k 25.6k A highly capable load test-
ing tool

scalaz/scalaz scalaz 4.2k 35.4k A Scala library for func-
tional programming

sbt/sbt sbt 4.0k 34.9k A build tool for Scala,
Java, and other languages

lampepfl/dotty dotty 3.6k 387.1k A Scala compiler

twitter/scalding scalding 3.2k 29.6k A Scala API for a Java tool
named cascading

milessabin/shapeless shapeless 2.9k 30.5k A Scala library for generic
programming

scalatra/scalatra scalatra 2.4k 8.4k A tiny, Sinatra-like web
framework

spark-jobserver/spark-jobserver jobserver 2.4k 7.6k A REST job server for
Apache Spark

twitter/util util 2.3k 27.4k A collection of core JVM
libraries of Twitter

slick/slick slick 2.3k 20.8k A Scala library for
database querying and
accessing

lagom/lagom lagom 2.3k 21.8k A framework for building
reactive microservice sys-
tems in Java or Scala

lihaoyi/Ammonite ammonite 2.1k 8.6k A Scala tool for scripting
purposes

twitter/finatra finatra 1.9k 20.2k A framework for build-
ing applications on Twit-
terServer and Finagle

Empirical Software Engineering (2020) 25:4547–4584 4553



Table 1 (continued)

Project Abbr. #Star LoC Project description

twitter/algebird algebird 1.9k 22.7k A library for abstracting
algebra in Scala

circe/circe circe 1.8k 6.9 A JSON library for Scala

Azure/mmlspark mmlspark 1.7k 18.0k Microsoft machine learn-
ing for Apache Spark

http4s/http4s http4s 1.7k 29.1k A minimal, idiomatic
Scala interface for HTTP
services

spotify/scio scio 1.7k 30.5k A Scala API for Apache
Beam and Google Cloud
Dataflow

sangria-graphql/sangria sangria 1.6k 15.0k A Scala library for the
GraphQL data query lan-
guage

typelevel/scalacheck scalacheck 1.6k 3.4k A library for testing Scala
or Java programs

zio/zio zio 1.6k 13.9k A Scala library for asyn-
chronous and concurrent
programming

getquill/quill quill 1.5k 15.6k A compile-time language
integrated queries for
Scala

tpolecat/doobie doobie 1.5k 14.7k A pure functional JDBC
layer for Scala

functional-streams-for-scala/fs2 fs2 1.5k 9.2k A Scala library for func-
tional streams

foundweekends/giter8 giter8 1.5k 1.4k A command line tool for
applying templates pub-
lished on Github

ThoughtWorksInc/Binding.scala binding 1.4k 3.4k A data-binding framework
for Scala

Total 137.0k 1326.3k

For the sake of space, each project will be denoted by its abbreviation in the following sections

objects, and variables as well as their positions in source code. Then we collected all func-
tion calls of the higher-order functions by parsing the above semantic database. In all 35
projects in Table 1, there are 15,239 Scala files and 1,326.3k executable lines of code in
total; 8,285 definitions of higher-order functions with 22,579 calls are recorded for further
analysis.

Developer extraction We mined the information about developers who have written the
function definitions and calls to understand the use of higher-order functions.

We used the Git API to extract the Git log and traced back all logged changes. We col-
lected historical commits that relate to the changes of function definitions and calls. For
each of such commits, we extracted the developer (including the name and the e-mail) who
submitted it, the timestamp, the added changes, and positions. For a definition of a higher-
order function, we sorted all authors of the higher-order function according to the number

Empirical Software Engineering (2020) 25:4547–45844554



of changes the author made for this higher-order function and identified the developer who
wrote most changes as its original author (Zhang et al. 2018); similarly, for the source code
of a function call, we identified the developer who wrote most changes of this function
call (adding or modifying the function call) as its original author. If two or more develop-
ers wrote the same number of changes, the developer who wrote the earliest change among
these developers is identified as the author.

LoC measurement We leverage the LoC to directly measure the lines of code of a higher-
order function. The LoC is the number of executable lines of code without blank or
comments; to count LoC, we measured the lines of Scala code inside a higher-order
function. We used LoC as a simple way to represent the size of a function.

Code complexity measurement We use the Cyclomatic complexity to measure the com-
plexity of the definition of a higher-order function. Cyclomatic complexity is a software
metric of linearly independent paths (McCabe 1976); to measure the Cyclomatic complex-
ity, we used the static analysis tool Scalameta to parse Scala files and construct the ASTs.8

Then we identified the Cyclomatic complexity of each higher-order function by traversing
its AST. For each function, we constructed its control flow graph by traversing the abstract
syntax tree. A control flow graph is an abstract representation based on predicate nodes,
which consists of all paths in the program execution (Gu et al. 2019). In a control flow
graph, a node represents one or more consecutive unbranched statements and an edge rep-
resents a branch between these nodes. A predicate node is a node that represents a predicate
in an if-condition or a loop. Cyclomatic complexity is defined as the number of predicate
nodes plus one. This definition is equivalent to e − n + 2, where e and n are the number of
edges and the number of nodes.

Code style measurement We leverage the number of suspected issues of code style of
Scala functions to measure the code quality of a higher-order function. We define #Style-
Warnings as the number of suspected issues of code style via an off-the-shelf tool of code
style checking, ScalaStyle.9 The ScalaStyle tool can extract 40 types of code style issues that
relate to function code, including the existence of braces of if-statements, the use of magic
numbers, the redundant whitespace after left brackets. For the definition of each higher-
order function, we count the number of issues inside the definition based on the result of
running ScalaStyle.

2.2 Research Questions

Our work is to understand the use of higher-order functions in Scala programs. We designed
RQs to analyze the function definitions and function calls in five categories: the data scale,
the definition types, the definition distribution, the factor that correlates with the function
calls, and the developer contribution.

RQ1. How many higher-order functions are there in Scala projects? Higher-order func-
tions are introduced to many programming languages. However, the ratio of higher-order
functions among all functions is unclear. We designed RQ1 to reveal the prevalence of

8Scalameta, http://scalameta.org/.
9ScalaStyle, http://www.scalastyle.org/.

Empirical Software Engineering (2020) 25:4547–4584 4555



higher-order function, i.e., how many higher-order functions are there in Scala programs.
We analyze the definitions and calls of higher-order functions in RQ1.

RQ2. How are higher-order functions defined? In general, a higher-order function can
take a function as a parameter and/or output a function as a returned result. This leads to
three categories of higher-order functions based on the input and the output. We intend to
investigate the definition types of higher-order functions in RQ2.

RQ3. Howdodefinitions of higher-order functions distribute? The definition of a higher-
order function can be characterized by code measurements. We analyze the distributions of
function definitions of higher-order functions and other functions in RQ3.

RQ4. Which factor correlates with the calls of higher-order functions? Higher-order
functions are expected to abstract the use pattern of functions (Karlsson and Haller 2018).
In RQ4, we investigate the potential factors that correlate with the number of calls of higher-
order functions. Empirical results of RQ4 can provide a way to understand the correlation
between calls for higher-order functions and factors of definitions.

RQ5. How do developers contribute to defining and calling higher-order functions?
The source code of higher-order functions is designed and written by developers. In
RQ5, we aim to examine how many developers have contributed to defining and calling
higher-order functions.

3 Empirical Results

We conducted experiments on higher-order functions and investigated five research ques-
tions. The results and findings related to these research questions are listed as follows.

3.1 RQ1. HowMany Higher-Order Functions are there in Scala Projects?

Method We answer RQ1 via exploring the scale of using higher-order functions. We
count definitions and calls of higher-order functions in each Scala project. We compare the
average number of function calls of higher-order functions and other functions.

Result and analysis We collected definitions and calls of all higher-order functions in 35
Scala projects. Besides higher-order functions, we collected the non-higher-order functions,
called first-order functions (Altenkirch 2001). Table 2 lists the numbers of definitions and
calls of higher-order functions and first-order functions. In total, there are 8,285 definitions
and 22,579 calls of these higher-order functions. Among 35 projects, higher-order functions
account for 6.84% of function definitions. The percentage of higher-order functions varies
largely across 35 projects: the ratio of definitions of higher-order functions ranges from
1.50% to 24.82%. In twenty projects, over 5% of functions are defined as higher-order
functions. Among 35 projects, Project zio reaches the highest ratio of defining higher-order
functions and Project kafka reaches the lowest ratio of definitions. There are 14 out of
35 projects, whose ratio of higher-order functions among all function definitions are higher
than the average ratio 6.84% when we consider the ratio of the definitions of higher-order
functions among all functions.

Empirical Software Engineering (2020) 25:4547–45844556



Table 2 Numbers of definitions and calls of higher-order functions and first-order functions in 35 Scala
projects

Abbr. Definitions Calls of HOFs Calls of FOFs

#All #HOFs Ratio (%) #Total calls #Avg. calls #Total calls #Avg. calls

scala 24731 1216 4.92% 5162 4.25 90840 3.86

predictionio 548 24 4.38% 52 2.17 1029 1.96

framework 3079 196 6.37% 266 1.36 5208 1.81

akka 13654 519 3.80% 1292 2.49 29915 2.28

kafka 600 9 1.50% 25 2.78 1191 2.02

gitbucket 1046 61 5.83% 543 8.90 2675 2.72

finagle 6147 157 2.55% 204 1.30 5700 0.95

lila 5715 165 2.89% 505 3.06 10735 1.93

bfg 116 10 8.62% 5 0.50 139 1.31

gatling 2690 118 4.39% 345 2.92 3841 1.49

scalaz 8144 1853 22.75% 4191 2.26 10403 1.65

sbt 4043 436 10.78% 1989 4.56 11649 3.23

dotty 10349 256 2.47% 770 3.01 40542 4.02

scalding 4152 292 7.03% 846 2.90 5439 1.41

shapeless 1934 50 2.59% 46 0.92 2370 1.26

scalatra 1477 57 3.86% 33 0.58 1790 1.26

jobserver 619 13 2.10% 30 2.31 668 1.10

util 2760 176 6.38% 500 2.84 2778 1.08

slick 2881 161 5.59% 391 2.43 3684 1.35

lagom 1805 70 3.88% 35 0.50 1362 0.79

ammonite 792 72 9.09% 133 1.85 1078 1.50

finatra 657 38 5.78% 14 0.37 576 0.93

algebird 2228 230 10.32% 176 0.77 4228 2.12

circe 944 113 11.97% 68 0.60 710 0.85

mmlspark 1902 60 3.15% 87 1.45 1873 1.02

http4s 2474 160 6.47% 273 1.71 3493 1.51

scio 2120 156 7.36% 435 2.79 3181 1.62

sangria 1682 161 9.57% 133 0.83 3449 2.27

scalacheck 454 100 22.03% 239 2.39 812 2.29

zio 2603 646 24.82% 1524 2.36 4033 2.06

quill 1414 123 8.70% 213 1.73 3192 2.47

doobie 5672 426 7.51% 1485 3.49 2305 0.44

fs2 1442 150 10.40% 545 3.63 2380 1.84

giter8 123 5 4.07% 4 0.80 122 1.03

binding 184 6 3.26% 20 3.33 297 1.67

Total 121181 8285 6.84% 22579 2.73 263687 2.34

Column “Ratio” denotes the ratio of the number of higher-order functions dividing the number of all func-
tions. #Total calls and #Avg. calls denote the number of all function calls and the average number of calls per
definition. HOFs and FOFs stand for higher-order functions and first-order functions, respectively

Empirical Software Engineering (2020) 25:4547–4584 4557



As shown in Table 2, the total number of calls of higher-order functions is lower than
that of first-order functions. Comparing the average number of calls per definition, we find
that the average calls of higher-order functions and first-order functions are 2.73 and 2.34,
respectively. Among 35 projects, the average calls per higher-order function are higher
than the average calls per first-order function. The average calls suggest that higher-order
functions are called more frequently than first-order functions.

3.2 RQ2. How are Higher-Order Functions Defined?

Method We explore the types of defining higher-order functions via answering RQ2. We
divide all definitions of higher-order functions into three types by checking whether the
input or the output contains a function,

– Type I, a function definition takes at least one function as a parameter without
returning functions;

– Type II, a function definition returns at least one function with no function input;
– Type III, a function definition takes at least one function as a parameter and returns

functions.

Result and analysis Figure 2 shows examples of three types of definitions of higher-order
functions. The example in Type I takes a function fn() as input and has no specific out-
put; the example in Type II has no input and returns an anonymous function as output; the
example in Type III takes the function fn() as input and returns an anonymous function as
output.

We briefly present the distribution of definitions and calls of three defined types
of higher-order functions. Figure 3 presents the percentage of function definitions of
higher-order functions in all projects by categorizing the definition types.

Fig. 2 Examples of higher-order functions in Type I, Type II, and Type III

Empirical Software Engineering (2020) 25:4547–45844558



Fig. 3 Percentage of function definitions of higher-order functions in all projects by categorizing the
definition types

Among 35 projects under consideration, we can observe that 27 projects contain over
80% of definitions in Type I while 13 projects contain 90% of definitions in Type
I. In all 35 projects, 87.35% of definitions of higher-order functions belong to Type
I. This observation shows that Type I of higher-order functions are more frequently
defined than the other two types. In Project kafka, the percentage of Type I of higher-
order functions is the highest and reaches 100%; Meanwhile, in 17 projects, over 10%
of definitions of higher-order functions belong to Type II and in 6 projects, over
20% of definitions of higher-order functions belong to Type II. In project mmlspark,
the percentage of Type II of higher-order functions is the highest and reaches
71.67%; in addition, Type III of higher-order functions account for over 10% in one
project.

We further show the percentage of calls of higher-order functions in three types in
Fig. 4. We can find that 25 out of 35 projects contain over 80% of calls of higher-
order functions in Type I while 21 projects contain 90% of calls in Type I. In four
projects, kafka, finatra, circe, and binding, the percentage of Type I of higher-
order functions is the highest and reaches 100%. In all 35 projects, 90.66% of calls
of higher-order functions belong to Type I. Meanwhile, in 14 projects, over 10% of
calls of higher-order functions belong to Type II, and in 8 projects, over 20% of calls
of higher-order functions belong to Type II. Only one project, bfg, has over 10%
of calls of higher-order functions in Type III. According to Figs. 3 and 4, Type I
accounts for the highest percentage among all the definitions and calls of higher-order
functions.

Among all higher-order functions in the study, only taking functions as parameters is the
most common type of defining higher-order functions (87.35% of definitions with 90.66%
of calls). A higher-order function that takes at least one function as a parameter and returns
functions is not frequently defined and called.

Empirical Software Engineering (2020) 25:4547–4584 4559



Fig. 4 Percentage of function calls of higher-order functions in all projects by categorizing the definition
types

3.3 RQ3. How do Definitions of Higher-Order Functions Distribute?

Method We characterize the definitions of higher-order functions via three measurements,
the LoC, the Cyclomatic complexity, and the warnings in the code style. These measure-
ments are directly extracted from the source code of Scala functions (in Section 2.1).
For each measurement, we compare the percentage between higher-order functions and
first-order functions.

Result and analysis To compare these measurements between higher-order functions and
first-order functions, we present minimum, median, maximum, average, and standard devi-
ation values in Table 3. We conducted the Wilcoxon rank-sum test between higher-order
functions and first-order functions and the p-values in Table 3. As shown in Table 2, the
numbers of higher-order functions and first-order functions are different. Thus, we chose the
Wilcoxon rank-sum test, which is a non-parametric and non-paired test (Wilcoxon 1992).

The p-values in the Wilcoxon rank-sum test in Table 3 show that the measurements of
LoC, complexity, and warnings between higher-order functions and first-order functions

Table 3 The p-value between higher-order functions and first-order functions of LoC, complexity, and warn-
ings in the code style as well as their minimum, median, maximum, average, and standard deviation (Std.)
values

Measurement Function Min Median Max Average Std. p-value

LoC Higher-order 1 2 144 5.14 7.75 2.34E-21

First-order 1 2 781 5.70 12.62

Complexity Higher-order 1 1 17 1.35 1.02 2.03E-24

First-order 1 1 132 1.56 2.02

#StyleWarnings Higher-order 0 0 29 0.38 1.06 2.09E-58

First-order 0 0 93 0.54 1.31

Empirical Software Engineering (2020) 25:4547–45844560



are significantly different. We observed that minimum and median values between higher-
order functions and first-order functions are the same. The reason for this observation is
that most of the functions are short, simple, and non-risky. From the median values of
warnings in the code style, half of the higher-order functions and first-order functions con-
tain no issues in code style. The average and the standard deviation values show that the
measurements of higher-order functions, including LoC, complexity, warnings, are lower
than those of first-order functions. We showed illustrations on three measurements as
follows.

1) Executable Lines of Code In Table 3, the medians of the LoC, the Cyclomatic com-
plexity, and the warnings in the code style are 2, 1, and 0, respectively. To illustrate the
measurements, we show the percentage of values that are over the medians.

Figure 5 presents the accumulative percentage of the definitions of higher-order functions
that are no less than three lines. In 10 out of 35 projects, the percentage of functions with
three or more lines in higher-order functions is lower than that in first-order functions. This
shows that in these 25 projects, higher-order functions are longer than first-order functions
in terms of functions over the medians. In 21 projects, the percentage of functions with
20 or more lines in higher-order functions is lower than that in first-order functions. In 22
projects, the percentage of functions with over 30 lines in higher-order functions is lower
than that in first-order functions.

As shown in Fig. 5, there are over 10% of definitions of higher-order functions with
over 10 lines in 28 out of 35 projects; in 29 projects, definitions of first-order functions
with over 10 lines are over 10%. In one project, predictionio, there are over 70%
of definitions of higher-order functions with over 10 lines. Considering the number of
lines, in 9 out of 35 projects, over 10% of definitions of higher-order functions contain
over 20 lines; in 6 projects, over 10% contain over 30 lines. In 10 out of 35 projects,
i.e., framework, scalaz, util, slick, bfg, shapeless, scalatra, finatra,
circe, and giter8, there exists no definition of higher-order functions with over 30 lines.
For first-order functions, there are over 10% of definitions of first-order functions with over
20 lines in 4 out of 35 projects; there is no project contains over 30 lines over 10%.

Fig. 5 Accumulative percentage of function definitions for higher-order functions and first-order functions
by counting LoC of no less than three lines

Empirical Software Engineering (2020) 25:4547–4584 4561



0

50

100

150

sc
al

a

p
re

d
ic

ti
o

n
io

fr
am

ew
o

rk

ak
ka

ka
fk

a

g
it

bu
ck

et

fi
n

ag
le lil
a

b
fg

g
at

lin
g

sc
al

az sb
t

d
o

tt
y

sc
al

d
in

g

sh
ap

el
es

s

sc
al

at
ra

jo
b

se
rv

er u
ti

l

sl
ic

k

la
g

o
m

am
m

o
n

it
e

fi
n

at
ra

al
g

eb
ir

d

ci
rc

e

m
m

ls
p

ar
k

h
tt

p
4s

sc
io

sa
n

g
ri

a

sc
al

ac
h

ec
k

zi
o

q
u

ill

d
o

o
b

ie

fs
2

g
it

er
8

b
in

d
in

g

Project

L
o

C
 fo

r 
d

ef
in

it
io

n
s 

o
f 

H
O

F
s

Fig. 6 Violin-plots of LoC for function definitions of higher-order functions. The width of each bar is equal,
which denotes the maximum number of definitions with the same LoC inside one project

To further understand the distribution of LoC of higher-order functions, we illustrated
the violin-plots to present the probability density of LoC in each project in Fig. 6. In each
violin-plot, the LoC value with the broadest line indicates the LoC that appears for the most
times. Among 35 projects, 28 projects show a similar shape, where the data are mainly
concentrated at the bottom. The highest LoC reaches 144 in Project akka. We concluded
that the LoC of higher-order functions in most of the projects is distributed at the bottom,
i.e., the LoC less than 10.

2) Cyclomatic Complexity Besides the lines of executable code, we leveraged the Cyclo-
matic complexity to quantify the complexity of function definitions by counting the number
of linearly independent paths. Figure 7 presents the accumulative percentage of defini-
tions of higher-order functions in Cyclomatic complexity. In 19 out of 35 projects, the

Fig. 7 Accumulative percentage of function definitions for higher-order functions and first-order functions
by counting Cyclomatic complexity of no less than two

Empirical Software Engineering (2020) 25:4547–45844562



percentage of functions with the complexity of two or more in higher-order functions is
lower than that in first-order functions. In 31 out of 35 projects, there are over 10% of def-
initions of higher-order functions with the complexity of two or more; in 15 projects and
9 projects, there are over 20% and 30% of definitions of higher-order functions with the
complexity of two or more, respectively. As for first-order functions, there are over 10% of
definitions of first-order functions with the complexity of two or more in 34 out of 35; in 24
projects and 5 projects, there are over 20% and 30% of definitions of first-order functions
with the complexity of two or more, respectively. As shown in Fig. 7, 16 out of 35 projects
have over 10% of definitions of higher-order functions with the complexity of three or more;
four projects have over 10% of definitions of higher-order functions with the complexity of
four or more; and two projects have over 10% of definitions of higher-order functions with
the complexity of five or more. As for first-order functions, 21 projects have over 10% of
definitions with the complexity of three or more; 1 project (Project dotty) has over 10% of
definitions with the complexity of four or more; and no project has over 10% of definitions
with the complexity of five or more.

Through analysis of the complexity of higher-order functions, we find that most higher-
order functions favor low complexity. We note that a higher-order function can actually
represent a group of first-order functions (Lincke and Schupp 2012); the linear increment
of the complexity in a higher-order function may represent an exponential increment of the
complexity in a first-order function.

Figure 8 presents the violin-plots of Cyclomatic complexity for the definitions of higher-
order functions. From the figure, 28 projects have a similar distribution, where the data are
mainly concentrated at the bottom.Most of the higher-order functions tend to be simple code
structure with the Cyclomatic complexity of less than five. Six projects behave differently:
plots of Projects kafka, jobserver, finatra, giter8, and binding aggregate in
the middle or the top, not the bottom. The highest complexity reaches 17 in Project quill.

3) Warnings in the Code Style The code style is also used to measure the quality of the
source code. Bacchelli and Bird (2013a) and Gousios et al. (2016) have shown that code
style issues can reveal potential risks in the source code and may affect the code review and

5

10

15

sc
al

a

p
re

d
ic

ti
o

n
io

fr
am

ew
o

rk

ak
ka

ka
fk

a

g
it

bu
ck

et

fi
n

ag
le lil
a

b
fg

g
at

lin
g

sc
al

az sb
t

d
o

tt
y

sc
al

d
in

g

sh
ap

el
es

s

sc
al

at
ra

jo
b

se
rv

er u
ti

l

sl
ic

k

la
g

o
m

am
m

o
n

it
e

fi
n

at
ra

al
g

eb
ir

d

ci
rc

e

m
m

ls
p

ar
k

h
tt

p
4s

sc
io

sa
n

g
ri

a

sc
al

ac
h

ec
k

zi
o

q
u

ill

d
o

o
b

ie

fs
2

g
it

er
8

b
in

d
in

g

Project

C
yc

lo
m

at
ic

 c
o

m
p

le
xi

ty
 fo

r 
d

ef
in

it
io

n
s 

o
f 

H
O

F
s

Fig. 8 Violin-plots of Cyclomatic complexity for the definitions of higher-order functions. The width of each
bar is equal, which denotes the maximum number of definitions with the same complexity inside one project

Empirical Software Engineering (2020) 25:4547–4584 4563



code integration. Zou et al. (2019) found that the inconsistency of the code style can delay
the process of merging new changes. In this study, we used the number of reported warnings
in the code style to measure potential risks of source code.

Figure 9 presents the accumulative percentage of definitions of higher-order functions
by counting the warnings in the code style. In 23 out of 35 projects, there are fewer
warnings in the code style in higher-order functions than in first-order functions. In 34
projects, over 10% of definitions of first-order functions contain one or more warnings
in the code style; over 20% and 30% of definitions of first-order functions in 25 projects
and 15 projects, respectively, contain one or more warnings in the code style. As shown
in Fig. 9, there are over 10% of definitions of higher-order functions with the warnings of
two or more in 12 out of 35 projects; in three projects, kafka, ammonite, and giter8,
over 10% of definitions of higher-order functions contain over three warnings in the code
style. In one project, kafka, over 65% of definitions contain one or more warnings in
the code style. This observation reveals that code style issues widely exist in most of
the higher-order functions in Project kafka. In Project binding, these is no warning
in the code style since there are only 6 higher-order functions. For first-order functions,
there are over 10% of definitions with the warnings of two or more in 12 projects; in one
project, Project sangria, over 10% of definitions contain over three warnings in the code
style.

Figure 10 presents the violin-plots of warnings in the code style for the definitions of
higher-order functions. Among 35 projects, 27 projects have a similar distribution, where
the data are mainly concentrated at the bottom. That observation of most of the higher-order
functions with the warnings of zero shows that these higher-order functions have no code
style issue. The highest number of warnings in the code style reaches 29 in Project dotty;
that is, a higher-order function contains 29 reported warnings in the code style. A warning
in the code style in a function reveals that there is a potential risk to the code quality in the
future (McIntosh et al. 2016; Bacchelli and Bird 2013b; Rigby and Storey 2011). There are
warnings in over 10% of higher-order functions in 29 projects, and over 10% of first-order
functions in 34 projects. These higher-order functions and first-order functions should be
cautiously maintained in daily development.

Fig. 9 Accumulative percentage of function definitions for higher-order functions and first-order functions
by counting the warnings in the code style of no less than one

Empirical Software Engineering (2020) 25:4547–45844564



0

10

20

30
sc

al
a

p
re

d
ic

ti
o

n
io

fr
am

ew
o

rk

ak
ka

ka
fk

a

g
it

bu
ck

et

fi
n

ag
le lil
a

b
fg

g
at

lin
g

sc
al

az sb
t

d
o

tt
y

sc
al

d
in

g

sh
ap

el
es

s

sc
al

at
ra

jo
b

se
rv

er u
ti

l

sl
ic

k

la
g

o
m

am
m

o
n

it
e

fi
n

at
ra

al
g

eb
ir

d

ci
rc

e

m
m

ls
p

ar
k

h
tt

p
4s

sc
io

sa
n

g
ri

a

sc
al

ac
h

ec
k

zi
o

q
u

ill

d
o

o
b

ie

fs
2

g
it

er
8

b
in

d
in

g

Project

#S
ty

le
W

ar
n

in
g

s 
fo

r 
d

ef
in

it
io

n
s 

o
f 

H
O

F
s

Fig. 10 Violin-plots of warnings in the code style for the definitions of higher-order functions. The width of
each bar is equal, which denotes the maximum number of definitions with the same number of warnings in
the code style inside one project.

The average and the standard deviation values show that the measurements of higher-
order functions, including LoC, complexity, warnings, are lower than those of first-order
functions. For functions whose measurements are the medians, higher-order functions are
lower in LoC, complexity, and warnings in code style than first-order functions in 10, 19,
and 23 projects, respectively.

3.4 RQ4. Which Factor Correlates with the Calls of Higher-Order Functions?

Method We intended to find out the factors that correlate with the number of calls of
higher-order functions. Firstly, we build a multivariate linear regression model to understand
the correlation between the number of calls with three measurements, i.e., LoC, Cyclomatic
complexity, and #StyleWarnings. Secondly, in each project, we leverage the Spearman’s
rank correlation coefficient to show the correlation between the calls and LoC, Cyclomatic
complexity, and #StyleWarnings respectively. Thirdly, we illustrate the number of function
calls per definition with violin-plots.

Result and Analysis

1) Multivariate Linear Regression Analysis on All Projects We used the multivariate linear
regression model to measure the correlation between the number of function calls and three
measurements that potentially affect the calling. Multivariate linear regression model is
a regression model that can estimate linear correlations between one or more dependent
variables and multiple independent variables (Cohen et al. 2013). The correlation coefficient
for each independent variable is estimated by considering all variables.

In our model, the calls of higher-order functions are considered as a dependent variable
while the three measurements are considered as independent variables. We added another
two variables as confounding factors, i.e., the number of authors per function and the num-
ber of commits per function. We chose these two confounding factors since the counts of

Empirical Software Engineering (2020) 25:4547–4584 4565



authors or commits can directly link to functions and may correlate with the calls of higher-
order functions. A confounding factor in a regression model is a variable that influences both
dependent variables and independent variables; confounding is a causal concept that may
cause a spurious correlation and cannot be described as acorrelation (Cohen et al. 2013).

Table 4 presents the multivariate linear regression model between the number of calls and
the three measurements for each higher-order function. We built two models with or without
confounding factors, respectively. In the model with confounding factors, the correlation
between the number of functions calls and the complexity for each higher-order function is
0.7323. The p-value 0.0038 shows the correlation is statistically significant and the number
of calls for one higher-order function highly correlates with the complexity. For the other
two measurements, LoC and #StyleWarnings, the p-values are 0.4988 and 0.3664; that is,
there is no statistically significance.

For three measurements, changes on coefficient between two models with or without
confounding factors are 21.77%, 4.41%, and 8.11%, respectively. For regression models,
a change over 10% suggests that the independent variable may involve a spurious corre-
lation due to confounding factors (Budtz-Jorgensen et al. 2007; Lee 2015). That is, the
correlation between the number of calls and LoC may be caused by the two confounding
factors.

2) Correlation Analysis on Each Project To further understand the number of calls in
each project, we use the Spearman’s rank correlation coefficient to quantify the correla-
tion between the number of calls and each measurement that potentially correlates with
the calls. Spearman’s rank correlation coefficient is a non-parametric measure of the sta-
tistical correlation between ranks of two variables (Walpole et al. 2007). The correlation
coefficient, varying from -1 to 1, is calculated with the covariance of ranks of two given vari-
ables. The absolute value of the coefficient indicates the degree of correlation between two
variables: zero means no correlation and one means completely correlated. A positive coef-
ficient means that a variable increases when the other variable increases while a negative
coefficient means that a variable decreases when the other variable increases. We consider
a p-value less than 0.05 as statistically significant.

Table 5 presents the Spearman’s rank correlation coefficient between the number of calls
and the three measures, including LoC, Cyclomatic complexity, and #StyleWarnings, for

Table 4 Multivariate linear regression model between the number of calls and the three measurements (LoC,
complexity, and #StyleWarnings) for each higher-order function

Variable Model with confounding factors Model without confounding factors Change

Coefficient p-value Coefficient p-value

(Intercept) 1.4090 0.0003 2.2390 0.0000 –

LoC −0.0226 0.4988 −0.0177 0.5971 21.77%

Complexity 0.7323 0.0038 0.7000 0.0058 4.41%

#StyleWarnings −0.1992 0.3664 -0.2153 0.3296 8.11%

#Authors 0.4934 0.0000 – – –

#Commits −0.0513 0.0270 – – –

Two models are built, with or without confounding factors. The two confounding factors are used, #Authors
and #Commits. (Intercept) denotes the intercept of the linear model and change denotes the percent of the
coefficient change with or without confounding factors

Empirical Software Engineering (2020) 25:4547–45844566



Table 5 Spearman’s rank correlation coefficient between the number of calls and the three measures (LoC,
complexity, and #StyleWarnings) for each higher-order function in all projects under evaluation. We labeled
a coefficient in bold if its p-value is less than 0.05

Project LoC Complexity #StyleWarnings

Coefficient p-value Coefficient p-value Coefficient p-value

scala 0.2531 <2.20E-16 0.1684 3.44E-09 0.1162 4.90E-05

predictionio 0.2747 0.1938 0.4075 0.0481 −0.1263 0.5566

framework 0.0515 0.4737 −0.1757 0.0138 0.0229 0.7502

akka 0.1455 0.0009 0.1019 0.0203 −0.0028 0.9490

kafka 0.6610 0.0526 0.2219 0.5661 0.2155 0.5776

gitbucket −0.0449 0.7314 −0.0181 0.8898 0.0278 0.8318

finagle 0.2426 0.0022 0.2122 0.0076 0.0358 0.6565

lila 0.0823 0.2931 −0.1249 0.1099 −0.2336 0.0025

bfg 0.3584 0.0023 0.2162 0.0722 0.2625 0.0281

gatling 0.2944 0.0012 0.1551 0.0936 0.0577 0.5345

scalaz 0.2489 <2.20E-16 0.2489 <2.20E-16 −0.1184 3.18E-07

sbt 0.1741 0.0003 0.1829 0.0001 0.0061 0.8997

dotty 0.2037 0.0010 0.1429 0.0222 0.0648 0.3013

scalding 0.0397 0.4987 0.0730 0.2138 −0.1933 0.0009

shapeless 0.3321 0.0185 0.4785 0.0004 0.3159 0.0255

scalatra 0.3976 0.0022 0.2498 0.0610 −0.3781 0.0037

jobserver −0.3588 0.2286 −0.4084 0.1659 −0.2307 0.4483

util 0.2791 0.0002 0.3296 7.96E-06 −0.0802 0.2899

slick 0.0758 0.3395 0.1702 0.0309 −0.0166 0.8341

lagom 0.3584 0.0023 0.2162 0.0722 0.2625 0.0281

ammonite 0.3932 0.0006 0.1805 0.1291 −0.0611 0.6103

finatra 0.1702 0.3069 −0.0168 0.9202 −0.0972 0.5617

algebird −0.1711 0.0093 0.1603 0.0150 −0.2263 0.0005

circe 0.6758 <2.20E-16 0.1816 0.0543 −0.0873 0.3579

mmlspark 0.2067 0.1131 0.0024 0.9858 −0.0450 0.7330

http4s 0.3073 7.72E-05 0.1734 0.0283 0.2101 0.0077

scio −0.0317 0.6947 0.1629 0.0421 −0.0784 0.3309

sangria 0.0758 0.3392 0.0736 0.3535 −0.2894 0.0002

scalacheck 0.1045 0.3008 0.1759 0.0801 −0.1090 0.2804

zio 0.2683 4.10E-12 0.2191 1.83E-08 0.0524 0.1836

quill −0.2357 0.0087 −0.1026 0.2587 −0.1868 0.0386

doobie −0.2052 1.97E-05 0.1182 0.0146 0.0792 0.1028

fs2 0.1487 0.0694 0.0659 0.4228 0.0486 0.5545

giter8 0.5407 0.3467 0.1111 0.8588 0.7454 0.1482

binding 0.0924 0.8618 0.0984 0.8529 n/a † n/a †

†This value is not available since the number of warnings in the code style is zero

higher-order functions in each project. As shown in Table 5, LoC and Cyclomatic complex-
ity show positive correlations with the number of function calls in most projects; that is, a
higher-order function with more executable lines of code or higher complexity can be called

Empirical Software Engineering (2020) 25:4547–4584 4567



for more times. The p-values of correlation coefficients show the statistical significance: the
number of calls of higher-order functions correlates with the LoC in 19 out of 35 projects,
with the Cyclomatic complexity in 15 projects, and with #StyleWarnings in 12 projects. For
the LoC, coefficients of 15 out of 19 projects with statistical significance have positive cor-
relations of over 0.17. For the Cyclomatic complexity, coefficients of 14 out of 15 projects
with statistical significance have positive correlations. For #StyleWarnings, coefficients of
5 out of 12 projects with statistical significance show positive correlations with the number
of function calls while coefficients of the other 7 projects show negative correlations.

3) Illustration on Calls per Function Definition We illustrated the distribution of numbers
of function calls for different values of the three measurements. Figure 11 presents the
illustration of numbers of function calls for different values of LoC. The width in each
violin represents the frequency of the corresponding number of function calls. As shown
in Fig. 11, the shape of the violin gradually narrows when the LoC increases. Most of the
higher-order functions are called for once or twice. When the LoC is over 25, each violin
basically behaves like a straight line; that is, the destiny is low. We can observe that the
maximum number of calls shows a decreasing trend as the LoC increases, although there
exists a slight fluctuation between the LoC of 10 and 30.

Figure 12 illustrates the numbers of function calls for different values of Cyclomatic
complexity of higher-order functions. We observe that the structure of most higher-order
functions is not complicated and the higher-order functions with the Cyclomatic complexity
of one account for the vast majority. As shown in Fig. 12, there exists a higher-order function
with Cyclomatic complexity of four that has the most calls over 1,000. As the Cyclomatic
complexity of higher-order functions increases, the maximum number of calls of higher-
order functions generally decreases. The maximum number of higher-order function calls
with Cyclomatic complexity less than or equal to four is higher than the maximum number
of higher-order function calls with Cyclomatic complexity over four.

Fig. 11 Number of function calls per definition for LoC

Empirical Software Engineering (2020) 25:4547–45844568



Fig. 12 Number of function calls per definition for Cyclomatic complexity

Figure 13 presents the illustration of the numbers of function calls with #StyleWarnings.
As shown in Fig. 13, most higher-order functions have no code style warning. Higher-order
functions with warnings concentrated on the number of one or two. The majority of the
higher-order functions with warnings have one or two warnings. Meanwhile, as #StyleWarn-
ings increases, the maximum value of higher-order function calls fluctuates. One possible

Fig. 13 Number of function calls per definition for #StyleWarnings

Empirical Software Engineering (2020) 25:4547–4584 4569



reason for this fact is that the requirements of the code style are not consistent among all
projects in the study.

The regression analysis on all projects suggests that the number of calls for a higher-order
function highly correlates with the Cyclomatic complexity. Results on individual projects
show that the correlations with the number of executable lines of code are positive in most
projects; all correlations but one with the Cyclomatic complexity are positive; the number
of warnings in the code style contains both positive correlations and negative correlations.

3.5 RQ5. How do Developers Contribute to Defining and Calling Higher-Order
Functions?

Method We extracted and counted the number of function definitions and calls that are
contributed by each developer. Firstly, we divide functions in three categories to identify
developer contributions. Secondly, we compare definitions and calls of higher-order func-
tions and first-order functions that are made by top 20% developers. Thirdly, we illustrate
the definitions and calls per developer in each project.

Result and analysis Among a large number of function calls, how are function definitions
and calls contributed by developers? As mentioned in Section 2.1, we collected developer
information via the Git API. We identified the developer, who has written the most changes
to a definition or a call of a higher-order function, as the author of the definition or the call
of the higher-order function.

1) Functions that are Called by Different Developers Figure 14 illustrates the percentage
of definitions in three categories: a definition that is only called by the author of the defini-
tion, a definition that is only called by other developers except the author of the definition,
and a definition that is called by both its author and other developers. In 24 projects, the
percent of functions that are called by both authors and other developers in higher-order

Fig. 14 Percentage of function definitions that are called by different types of developers

Empirical Software Engineering (2020) 25:4547–45844570



functions is higher than that in first-order functions. We observed that there are 22 projects,
whose over 50% definitions of higher-order functions are only called by authors of these
definitions; there are 20 projects, whose over 50% definitions of first-order functions are
only called by authors. In Project binding, the percentage of the first category of higher-
order functions is the highest and reaches 100%. This observation shows that the definitions
of higher-order functions are more frequently called by the author of these definitions than
by other developers. In addition, in 20 projects, over 20% of definitions of higher-order
functions belong to the second category and in 14 projects, over 20% of definitions of
higher-order functions belong to the third category.

Besides the function definitions, we refined the function calls of each project according
to the overlap of developers of functions definitions and calls. Table 6 lists the numbers of
function calls based on three types of definitions and the overlap of developers. Among 105
mini-bar charts, 26 charts are blank since there is no such function in the corresponding
category, including 5 charts in Type II and 21 in Type III. Among the 79 non-blank
mini-bar charts, 39 charts show that most of the calls are made by the authors of functions
definitions; 6 charts shows that most of calls are made by other developers; and 34 charts
shows that most of the calls are made by both the authors of definitions and other developers.
This fact indicates that most of the calls of higher-order functions are made by the same
developers who have written the higher-order functions.

As shown in Table 6, there also exist 5,236 function calls of higher-order functions
that are made by developers other than the authors of definitions, including 4841 calls of
Type I, 336 calls of Type II, and 59 calls of Type III. This observation indicates
that developers have maintained the collaboration between defining and calling functions.
We can also observe that among all the charts in Type I, the higher-order functions in
14 out of 35 projects are mostly called by their authors; in Type II, the higher-order
functions in 20 projects are mostly called by their authors. However, in the total data
of 21 projects, we find that the higher-order functions are mostly called by both authors
and other developers. The reason for this observation is that the higher-order functions
in five large projects, including scala, scalaz, sbt, zio, and doobie are mostly
called by both authors and other developers. This indicates that in several large projects,
such as Project scala, developers may tend to work more collaboratively than in small
projects.

2) Definitions and Calls by Top 20%Developers To further understand the developer con-
tribution, we examined the number of definitions and calls by the top 20% developers who
have contributed the most. The choice of top 20% developers is derived from the 80-20 rule
from the empirical study in sociology, which reveals that 80% of incomes are made from
20% of products (Koch 2011; Reed 2001).

Figure 15 shows the percentage of definitions of higher-order functions and first-order
functions by top 20% developers, who have defined higher-order functions (Fig. 15(a) and
first-order functions (Fig. 15b). The y-axis in Fig. 15 is the ratio between the number of
contributed higher-order (or first-order) functions and the number of total higher-order (or
first-order) functions. That is, we focused on how many higher-order (or first-order) func-
tions are contributed by top 20% developers. From Fig. 15a, we found that in 32 out of
35 projects (91.43%), the top 20% developers who have contributed the most higher-order
functions have defined more percent of higher-order functions than first-order functions.
From Fig. 15b, in 20 projects (57.14%), the top 20% developers who have contributed
the most first-order functions have defined more percent of first-order functions than
higher-order functions.

Empirical Software Engineering (2020) 25:4547–4584 4571



Table 6 Function calls of higher-order functions based on the types of Type I, Type II, and Type III

The number of calls of each definition type is listed, including the number of functions that are called only by
the authors of the definition, only by developers other than authors, and both. We illustrate mini-bar charts to
briefly compare the number of function calls inside each definition type of each project. Sub-columns “All”,
“Self”, “Others”, and “Both” under each type of calls denote the number of all function calls, the calls that
are only made by the authors of function definitions, the calls that are only made by developers other than
the authors of definitions, and the calls by both authors and other developers

Similar to the definition, we used Fig. 16 to illustrate the percentage of calls of higher-
order functions and first-order functions by top 20% developers, who have called higher-
order functions (Fig. 16a) and first-order functions (Fig. 16b). From Fig. 16a, we found

Empirical Software Engineering (2020) 25:4547–45844572



Fig. 15 Percentage of definitions of higher-order functions and first-order functions by top 20% developers

that in 31 out of 35 projects (88.57%), the top 20% developers who have contributed the
most higher-order functions have called more percent of higher-order functions than first-
order functions. From Fig. 16b, in 19 projects (54.28%), the top 20% developers who have
contributed the most first-order functions have called more percent of first-order functions
than higher-order functions.

Figures 15 and 16 show that top 20% authors of higher-order functions have defined
and called more percent of higher-order functions than first-order functions in 32 and 31
projects, respectively; top 20% authors of first-order functions have defined and called
more percent of first-order functions than higher-order functions in 20 and 19 projects. This
reveals that authors of higher-order functions favor using higher-order functions, comparing
with authors of first-order functions.

3) Definitions and Calls per Developer To understand the contribution of function defini-
tions, we counted how many functions are defined by each developer. Figure 17 presents
the box-plots of numbers of definitions by each developer on the log scale. In 29 projects,

Empirical Software Engineering (2020) 25:4547–4584 4573



Fig. 16 Percentage of calls of higher-order functions and first-order functions by top 20% developers

the median number of definitions of higher-order functions per developer is lower than
that of first-order functions. As shown in Fig. 17, the median number of definitions of
higher-order functions by each developer is no more than 20 in 34 out of 35 projects; one
exception is Project sangria, whose median is 80.5. In 14 projects, 25% of develop-
ers have contributed over 10 definitions of higher-order functions; in 27 projects, 25% of
developers have contributed over 10 definitions of first-order functions. We can observe
that several developers have indeed defined many higher-order functions in their daily
development.

We also illustrated the contribution of calls of higher-order functions and first-order
functions. Figure 18 presents the box-plots of numbers of function calls by each developer
on the log scale. In 30 projects, the median number of calls of higher-order functions per
developer is lower than that of first-order functions. In 16 projects, 25% of developers have
contributed over 10 calls of higher-order functions; in 31 projects, 25% of developers have
contributed over 10 calls of first-order functions.

Empirical Software Engineering (2020) 25:4547–45844574



Fig. 17 Box-plots of function definitions of per developer on the log scale

Among all calls of higher-order functions, 43.82% calls are made by the same developers
who have defined the functions; meanwhile, there indeed exist higher-order functions
that are only called by developers other than their authors of definitions. Results suggest
that top 20% authors of higher-order functions have defined and called more percent of
higher-order functions than first-order functions in 32 and 31 projects, respectively.

3.6 Discussion

Using higher-order functions is not easy (Lincke and Schupp 2012). In Table 7, we sum-
marized the results and brief implications of higher-order functions according to RQs in
Sections 3.1–3.5.

Fig. 18 Box-plots of function calls per developer on the log scale

Empirical Software Engineering (2020) 25:4547–4584 4575



Table 7 Brief implications based on the exploratory study with five research questions

RQ Implication

RQ1. How many higher-order functions are
there in Scala projects?

In all 35 Scala projects, the ratio of definitions of
higher-order functions ranges from 1.50% to 24.82%.
This indicates that as a language feature of Scala,
higher-order functions are accepted and used in all
projects in our study.

The average number of calls per function suggests
that higher-order functions (2.73 calls per defini-
tion) are called more frequently than first-order func-
tions(2.34 calls per definition). Using higher-order
functions can help if code reuse and maintenance is
crucial to the project (Richardson 2017).

RQ2. How are higher-order functions defined? Functions that only take functions as parameters
are the most common type of definitions among
all higher-order functions in the study; functions
that both take functions as a parameter and return
functions are not frequently defined and called. To
assist developers who need all types of higher-order
functions, software companies and organizations can
provide training to improve the skills of mastering
higher-order functions (if necessary).

RQ3. How do definitions of higher-order
functions distribute?

This study shows that the average and the standard
deviation values of three measurements (including
LoC, complexity, warnings in code style) in higher-
order functions are lower than those of first-order
functions. This suggests higher-order functions are
not longer, more complex, or riskier than first-order
functions. Meanwhile, this partially shows the evi-
dence that higher-order functions may be used more
in the future.

RQ4. Which factor correlates with the calls
of higher-order functions?

Regression analysis on all projects shows that the
number of calls for a higher-order function highly
correlates with the Cyclomatic complexity. This sug-
gests a complex higher-order function does not hinder
its use.

Correlation analysis on individual projects shows that
definitions with high LoC or high Cyclomatic com-
plexity correlate with the callings of these functions.
When a developer defines a higher-order function, the
definition could be long or complex if it is necessary.

RQ5. How do developers contribute to
defining and calling higher-order functions?

Among all calls of higher-order functions, 43.82%
calls are made by the same developers who have
defined the functions. Top 20% developers of higher-
order functions have defined or called more percent
of higher-order functions than first-order functions.
This suggests that higher-order functions are not used
by every developer. The community of programming
languages with the feature of higher-order functions
like Scala may promote this language feature to
attract new users.

Empirical Software Engineering (2020) 25:4547–45844576



Besides the results in Table 7, we listed our suggestions on using Scala in practice as
follows.

– Using complex higher-order functions if necessary. Our study analyzed the correla-
tion between the number of function calls and the Cyclomatic complexity of definitions.
Results in RQ4 shows complex higher-order functions highly correlate with the func-
tion calls. Therefore, developers do not need to reject using complex higher-order
functions if these functions are necessary in development.

– Building collaboration among developers. This study examined the developer con-
tributions of higher-order functions in Scala projects. RQ5 reveals that 43.82% of
higher-order functions are called by the same developers who have made their def-
initions; authors of higher-order functions favor using higher-order functions than
first-order functions. We suggest that developers continue building collaborations
among developers and promote their code to enlarge the user group of their higher-order
functions.

– Providing training for language features. In this study, we showed the existence of
higher-order functions in 35 Scala projects via investigation on definitions and calls.
Considering the current use of higher-order functions in Scala programs, software com-
panies or organizations can provide training of language features, such as higher-order
functions in Scala. This can bring in new developers to learn and apply higher-order
functions to their projects.

4 Threats to Validity

We conducted an exploratory study on using higher-order functions in Scala programs. We
discussed the threats to the validity of our work in three aspects.

Threats to construct validity In the study, we quantified the complexity and the warnings
in the code style of a higher-order function via leveraging three measures, i.e., LoC, Cyclo-
matic complexity, and #StyleWarnings. We chose these three measures because they are
widely used and can be simply extracted via off-the-shelf tools. We notice that there exist
several other techniques or tools that can be used as measures, such as the Halstead complex-
ity to measure the functional complexity based on parsing operators (Albrecht and Gaffney
1983). We plan to involve other measures in further work. Meanwhile, the warning in the
code style reveals a potential risk to quality. Our study has not validated such risks due to
the unavailable data of quality in the future. In Section 2.1, we identify developers via their
e-mail addresses. However, if a developer uses two or more e-mail addresses, it is difficult
to simultaneously match these e-mail addresses to the same developer. Such multiple e-mail
addresses of a single developer may affect the computation of developer contributions, e.g.,
the result in Section 3.4. In developer extraction, we parsed all logs in the project history.
However, several commits may be deleted by the project manager. In this case, developers
in the deleted logs cannot be extracted. We followed existing works (Zhao et al. 2017; Zou
et al. 2019; Fry et al. 2020) to skip developers in the deleted logs.

Threats to internal validity The correlation analysis in the paper may be biased due to
potential confounding variables. Since it is difficult to exhaust many potential variables, we
used Spearman’s rank correlation coefficient to measure the linear correlation between two
variables, such as the number of calls and the LoC. The experimental result in the paper

Empirical Software Engineering (2020) 25:4547–4584 4577



can be viewed as an observation on the linear correlation and the impact of confounding
variables could be further explored.

Threats to external validity Our study selected 35 Scala projects according to the number
of stars from GitHub. Therefore, our empirical study may not represent the general result
of the usage of higher-order functions in all Scala projects. Selecting projects based on the
number of stars or the number of forks may lead to the bias of sampled projects. In our
study, we have filtered out several projects, such as Project scala-js due to the issues
of configurations and requirements of the tool SemanticDB. Such filtering may also result
in the selection bias of projects. The experimental results can only indicate the observation
and findings based on the data collection and preparation in this paper

5 RelatedWork

This paper aims to conduct an exploratory study on using higher-order functions in Scala
programs. We summarized the related work in two categories, the study on using higher-
order functions and the study on Scala programs.

5.1 On Using Higher-Order Functions

Many studies used higher-order functions as a new paradigm to solve complex problems.
Wester and Kuper (2013) applied higher-order functions as a trade-off between time and
area for large digital signal processing applications. They further converted the higher-order
functions in Haskell into data flow nodes to weigh particle filter time and space consumption
(Wester and Kuper 2014). Clark and Barn (2013) used higher-order functions in dynamic
reconstruction of event-driven architectures to increase the flexibility of the model. Bas-
soy and Schatz (2018) optimized higher-order functions to quickly calculate tensors; their
optimized implementation achieved 68% of the maximum throughput of the Intel Core
i9-7900X. Nakaguchi et al. (2016) treated services as functions and used higher-order func-
tions to combine these services without creating new services. Racordon (2018) leveraged
higher-order functions to implement components to provide coroutines for programming
language without coroutines.

Existing studies have been conducted experiments to understand the difficulty of ver-
ifying and testing higher-order functions. Madhavan et al. (2017) presented a novel
approach that uses lazy evaluation and memoization to specify and verify the resource
utilization of higher-order functional programs. Voirol et al. (2015) presented a valida-
tor for pure higher-order functional Scala programs, which support arbitrary function
types and nested anonymous functions. Rusu and Arusoaie (2017) embedded a higher-
order functional language with imperative features into the Maude framework to verify
higher-order functional programs. Selakovic et al. (2018) presented LambdaTester to auto-
mate test generation for higher-order functions in dynamic languages. Xu et al. (2019)
designed an automated method to identify potential calls of higher-order functions for Scala
programs. Lincke and Schupp (2012) proposed the transformation that converts higher-
order functions into lower-order functions by mapping higher-order types to lower-order
types.

In this paper, we proposed the first study on how developers use higher-order functions
in Scala programs. We conducted five research questions to understand the definitions and
calls of higher-order functions.

Empirical Software Engineering (2020) 25:4547–45844578



5.2 On Scala Programs

The Scala language has been widely studied in the research community. We list several
related works to briefly introduce the recent progress on the study of Scala programs. Cassez
and Sloane (2017) presented a Scala library called ScalaSMT, which supports the Satis-
fiability Modulo Theory (SMT) solving in Scala via accessing mainstream SMT solvers.
Kroll et al. (2017) used pattern matching of the Scala language and presented a frame-
work that supports the straightforward and simplified translation via connecting a formal
algorithm specification and executable code. To implement efficient super-compilers for
arbitrary programming languages, Nystrom (2017) designed a Scala framework that can be
used for experimenting with super-compilation techniques and constructed directly from
an interpreter. Reynders et al. (2018) defined a multi-tier language, Scalagna, which com-
bines the existing Scala JVM and JavaScript ecosystems into a single programming model
without requiring changes or rewrites of existing Scala compilers. Karlsson and Haller
(2018) presented the first implemented design for records in Scala which enables type-
safe record operations. Rahman et al. (2020) conducted a study on code clone detection on
Scala programs. In the field of education, van der Lippe et al. (2016) leveraged the Scala
programming language and the WebLab online learning management system to automate
specification tests on the submissions by students. Additionally, they have developed a scal-
able solution for running a course on concepts of programming languages using definitional
interpreters.

Our study in this paper focuses on higher-order functions, an important feature of the
Scala language. Understanding the use of higher-order functions can help improve the
reusability and maintenance of source code.

6 Conclusions

Constructing higher-order functions from existing functions decreases the number of simi-
lar functions and improves the code reusability. Understanding higher-order functions can
help support automated code reusability and code generation. In this paper, we conducted
an exploratory study on the use of higher-order functions in Scala programs. We col-
lected definitions, calls, and authors of higher-order functions from 35 Scala projects with
the most stars. Our study shows that 6.84% of functions in these 35 Scala programs are
defined as higher-order functions and 47.31% of higher-order functions are defined and
called by the same developers. Meanwhile, we found that the number of calls of higher-
order functions highly correlates with the code complexity of function definitions. Results
in this study can be used to support the use of higher-order functions in Scala programs
in practice.

In future work, we plan to conduct user questionnaires to invite developers to further
evaluate the use of higher-order functions. Such evaluation is to reveal potential difficulties
or practical issues in using higher-order functions. Meanwhile, we plan to investigate when
to use higher-order functions and analyze the cases where higher-order functions could help
but were not applied. We also plan to design experiments on the changes of higher-order
functions, e.g., different developers who have changed the definition of higher-order func-
tions. This may help understand the evolution of higher-order functions and guide future
development with higher-order functions. Another future work is to investigate higher-order
functions in other programming languages. We aim to understand the differences in usage
patterns of higher-order functions between Scala and other languages.

Empirical Software Engineering (2020) 25:4547–4584 4579



Acknowledgements The work is supported by the National Key R&D Program of China under Grant
No. 2018YFB1003901, the National Natural Science Foundation of China under Grant No. 61872273, and
the Advance Research Projects of Civil Aerospace Technology – Communications, Navigation and Remote
Sensing Integrated Applications and Multi-source Spatial Data Fusion Technology.

References

Albrecht AJ Jr, Gaffney JE (1983) Software function, source lines of code, and development effort pre-
diction: A software science validation. IEEE Trans Softw Eng 9(6):639–648. https://doi.org/10.1109/
TSE.1983.235271

Altenkirch T (2001) Representations of first order function types as terminal coalgebras. In: Proceedings of
the 5th International Conference on Typed Lambda Calculi and Applications, TLCA 2001, Krakow, pp.
8–21. https://doi.org/10.1007/3-540-45413-6 5

Bacchelli A, Bird C (2013a) Expectations, outcomes, and challenges of modern code review. In: Proceedings
of the 2013 International Conference on Software Engineering. IEEE Press, pp 712–721

Bacchelli A, Bird C (2013b) Expectations, outcomes, and challenges of modern code review. In: Notkin
D, Cheng BHC, Pohl K (eds) 35th International Conference on Software Engineering, ICSE ’13. IEEE
Computer Society, San Francisco, pp 712–721. https://doi.org/10.1109/ICSE.2013.6606617

Bassoy C, Schatz V (2018) Fast higher-order functions for tensor calculus with tensors and subtensors.
In: Proceedings of the 18th International Conference on Computational Science, ICCS 2018, Wuxi,
Proceedings, Part I, pp 639–652. https://doi.org/10.1007/978-3-319-93698-7 49

Brachthȧuser JI, Schuster P (2017) Effekt: extensible algebraic effects in scala. In: Proceedings of the 8th
ACM SIGPLAN International Symposium on Scala, SCALA@SPLASH 2017, Vancouver, pp 67–72.
https://doi.org/10.1145/3136000.3136007

Budtz-Jorgensen E, Keiding N, Grandjean P, Weihe P (2007) Confounder selection in environmental epi-
demiology: Assessment of health effects of prenatal mercury exposure. Ann Epidemiol 17:27–35.
https://doi.org/10.1016/j.annepidem.2006.05.007

Cardelli L, Wegner P (1985) On understanding types, data abstraction, and polymorphism. ACM Comput
Surv 17(4):471–522. https://doi.org/10.1145/6041.6042

Cassez F, Sloane AM (2017) Scalasmt: satisfiability modulo theory in scala. In: Proceedings of the 8th
ACM SIGPLAN International Symposium on Scala, SCALA@SPLASH 2017, Vancouver, pp 51–55.
https://doi.org/10.1145/3136000.3136004

Clark T, Barn BS (2013) Dynamic reconfiguration of event driven architecture using reflection and higher-
order functions. Int J Softw Inf 7(2):137–168. http://www.ijsi.org/ch/reader/view abstract.aspx?file
no=i157

Cohen J, Cohen P, West SG, Aiken LS (2013) Applied multiple regression/correlation analysis for the
behavioral sciences. Routledge, Abingdon

Fry T, Dey T, Karnauch A, Mockus A (2020) A dataset and an approach for identity resolution of 38 million
author ids extracted from 2b git commits. arXiv:2003.08349

Gousios G, Storey MD, Bacchelli A (2016) Work practices and challenges in pull-based development: the
contributor’s perspective. In: Proceedings of the 38th International Conference on Software Engineering,
ICSE 2016, Austin, pp 285–296. https://doi.org/10.1145/2884781.2884826

Gu Y, Xuan J, Zhang H, Zhang L, Fan Q, Xie X, Qian T (2019) Does the fault reside in a stack
trace? assisting crash localization by predicting crashing fault residence. J Syst Softw 148:88–104.
https://doi.org/10.1016/j.jss.2018.11.004

HackerNews (2009) Twitter jilts Ruby for Scala. http://news.ycombinator.com/item?id=542716
Karlsson O, Haller P (2018) Extending scala with records: design, implementation, and evaluation. In: Pro-

ceedings of the 9th ACM SIGPLAN International Symposium on Scala, SCALA@ICFP 2018, St. Louis,
pp 72–82. https://doi.org/10.1145/3241653.3241661

Koch R (2011) The 80/20 Principle: The Secret of Achieving More with Less: Updated 20th anniversary
edition of the productivity and business classic. Hachette, UK

Kroll L, Carbone P, Haridi S (2017) Kompics scala: narrowing the gap between algorithmic specification
and executable code (short paper). In: Proceedings of the 8th ACM SIGPLAN International Symposium
on Scala, SCALA@SPLASH 2017, Vancouver, pp 73–77. https://doi.org/10.1145/3136000.3136009

Lee PH (2015) Should we adjust for a confounder if empirical and theoretical criteria yield contradictory
results? A simulation study Scientific Reports 4(6085). https://doi.org/10.1038/srep06085

Empirical Software Engineering (2020) 25:4547–45844580



Lincke D, Schupp S (2012) From HOT to COOL: transforming higher-order typed languages to concept-
constrained object-oriented languages. In: International workshop on language descriptions, tools, and
applications, LDTA ’12, Tallinn, pp 3. https://doi.org/10.1145/2427048.2427051

Madhavan R, Kulal S, Kuncak V (2017) Contract-based resource verification for higher-order functions with
memoization. In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, Paris, pp 330–343. http://dl.acm.org/citation.cfm?id=3009874

McCabe TJ (1976) A complexity measure. IEEE Trans Softw Eng 2(4):308–320. https://doi.org/10.1109/
TSE.1976.233837

McIntosh S, Kamei Y, Adams B, Hassan AE (2016) An empirical study of the impact of modern code review
practices on software quality. Empir Softw Eng 21(5):2146–2189. https://doi.org/10.1007/s10664-015-
9381-9

Nakaguchi T, Murakami Y, Lin D, Ishida T (2016) Higher-order functions for modeling hierarchical service
bindings. In: IEEE International conference on services computing, SCC 2016, San francisco, pp 798–
803. https://doi.org/10.1109/SCC.2016.110

Nystrom N (2017) A scala framework for supercompilation. In: Proceedings of the 8th ACM SIGPLAN
International Symposium on Scala, SCALA@SPLASH 2017, Vancouver, pp 18–28. https://doi.org/10.
1145/3136000.3136011

Odersky M, Altherr P, Cremet V, Emir B, Maneth S, Micheloud S, Mihaylov N, Schinz M, Stenman
E, Zenger M (2004) An overview of the scala programming language. Tech. rep., Technical Report
IC/2004/64. EPFL Lausanne, Switzerland

Racordon D (2018) Coroutines with higher order functions. CoRR arXiv:1812.08278
Rahman W, Xu Y, Pu F, Xuan J, Jia X, Basios M, Kanthan L, Li L, Wu F, Xu B (2020) Clone detection

on large scala codebases. In: IEEE 14Th international workshop on software clones, IWSC 2020. IEEE,
London, pp 38–44. https://doi.org/10.1109/IWSC50091.2020.9047640

Reed WJ (2001) The pareto, zipf and other power laws. Econ Lett 74(1):15–19
Reynders B, Greefs M, Devriese D, Piessens F (2018) Scalagna 0.1: towards multi-tier programming with

scala and scala.js. In: Conference companion of the 2nd international conference on art, science, and
engineering of programming, Nice, pp 69–74. https://doi.org/10.1145/3191697.3191731

Richardson B (2017) When should i use higher order functions? http://www.quora.com/When-should-I-use-
higher-order-functions

Richmond D, Althoff A, Kastner R (2018) Synthesizable higher-order functions for C++. IEEE Trans CAD
Integr Circ Syst 37(11):2835–2844. https://doi.org/10.1109/TCAD.2018.2857259

Rigby PC, Storey MD (2011) Understanding broadcast based peer review on open source software projects.
In: Taylor RN, Gall HC, Medvidovic N (eds) Proceedings of the 33rd International Conference on Soft-
ware Engineering, ICSE 2011. ACM, Waikiki, pp 541–550. https://doi.org/10.1145/1985793.1985867

Rusu V, Arusoaie A (2017) Executing and verifying higher-order functional-imperative programs in maude.
J Log Algebr Meth Program 93:68–91. https://doi.org/10.1016/j.jlamp.2017.09.002

Scala (2020) The scala language. http://scala-lang.org/
Selakovic M, Pradel M, Karim R, Tip F (2018) Test generation for higher-order functions in dynamic

languages. PACMPL 2(OOPSLA):161:1–161:27. https://doi.org/10.1145/3276531
van der Lippe T, Smith T, Pelsmaeker D, Visser E (2016) A scalable infrastructure for teaching concepts

of programming languages in scala with weblab: an experience report. In: Proceedings of the 7th ACM
SIGPLAN Symposium on Scala, SCALA@SPLASH 2016, Amsterdam, pp 65–74. https://doi.org/10.
1145/2998392.2998402

Voirol N, Kneuss E, Kuncak V (2015) Counter-example complete verification for higher-order functions. In:
Proceedings of the 6th ACM SIGPLAN Symposium on Scala, Scala@PLDI 2015, Portland, pp 18–29.
https://doi.org/10.1145/2774975.2774978

Walpole RE, Myers SL, Ye K, Myers RH (2007) Probability and statistics for engineers and scientists.
Pearson, London

Wester R, Kuper J (2013) A space/time tradeoff methodology using higher-order functions. In: 23Rd
international conference on field programmable logic and applications, FPL 2013, Porto, pp 1–2.
https://doi.org/10.1109/FPL.2013.6645613

Wester R, Kuper J (2014) Design space exploration of a particle filter using higher-order functions. In:
Reconfigurable Computing: Architectures, Tools, and Applications - 10th International Symposium,
ARC 2014, Vilamoura. Proceedings, pp 219–226. https://doi.org/10.1007/978-3-319-05960-0 21

Wilcoxon F (1992) Individual comparisons by ranking methods. In: Breakthroughs in statistics. Springer, pp
196–202

Xu Y, Jia X, Xuan J (2019) Writing tests for this higher-order function first: Automatically identifying
future callings to assist testers. In: Proceedings of the 11th Asia-Pacific Symposium on Internetware
(Internetware 2019), Fukuoka, pp 1–10. https://doi.org/10.1145/1122445.1122456

Empirical Software Engineering (2020) 25:4547–4584 4581



Zhang X, Chen Y, Gu Y, ZouW, Xie X, Jia X, Xuan J (2018) How do multiple pull requests change the same
code: A study of competing pull requests in github. In: 2018 IEEE International conference on software
maintenance and evolution, ICSME 2018, Madrid, pp 228–239. https://doi.org/10.1109/ICSME.2018.
00032

Zhao Y, Serebrenik A, Zhou Y, Filkov V, Vasilescu B (2017) The impact of continuous integration on other
software development practices: a large-scale empirical study. In: Rosu G, Penta MD, Nguyen TN (eds)
Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering,
ASE 2017. IEEE Computer Society, Urbana, pp 60–71. https://doi.org/10.1109/ASE.2017.8115619

Zou W, Xuan J, Xie X, Chen Z, Xu B (2019) How does code style inconsistency affect pull request integra-
tion? an exploratory study on 117 github projects. Empir Softw Eng 24(6):3871–3903. https://doi.org/10.
1007/s10664-019-09720-x

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Yisen Xu is a master student at the School of Computer Science,
Wuhan University, China, under supervision of Prof. Jifeng Xuan.
He received the bachelor degree in software engineering at School of
Computer Science, Wuhan University, in 2019. His research interests
lie within software testing and mining software repositories.

Fan Wu is a co-founder of Turing Intelligence Technology. He holds
Ph.D. degree in Software Engineering from UCL. He is renowned
for his work on Deep Optimisation on software systems, a research
field he co-founded, which has drawn significant attention and grown
rapidly. He serves as reviewer and Program Committee member for
prestigious research conferences and journals, such as Journal of
Systems and Software (JSS) on 2016, 2017 and 2018, Information
Software and Technology (IST) on 2017, and The Genetic and Evo-
lutionary Computation Conference (GECCO) on 2018. Previously
he was a postgraduate researcher for Tsinghua University on CUDA
optimisation, after obtaining his first degree from the same univer-
sity. His research interests include search based software engineering,
software genetic improvement, evolutionary computation, machine
learning.

Empirical Software Engineering (2020) 25:4547–45844582



Xiangyang Jia received the Ph.D. degree in computer software and
theory from Wuhan University, China, in 2008. From 2014 to 2015,
he was a visiting researcher with the Dependable Evolvable Pervasive
Software Engineering Group, Politecnico di Milano. He is currently
a lecturer with the School of Computer Science, Wuhan University.
His current research interests include symbolic execution, software
analysis, search-based software engineering, and mining software
repositories. Dr. Jia is a member of the CCF. He received the Hubei
Science and Technology Progress Award in 2014.

Lingbo Li is a co-founder of Turing Intelligence Technology. He
received Ph.D. in Software Engineering from University College
London under the supervision of Prof. Mark Harman (Facebook). He
was subsequently invited to take associate professorship at the School
of Computer Science, Wuhan University, China. Academically, he
serves on the program committee and as reviewer for various presti-
gious research conferences and journals, such as, Journal of Systems
and Software (JSS) on 2017 and 2018, Information Software and
Technology (IST) on 2017, IEEE Intelligent Systems on 2017, and
the Genetic and Evolutionary Computation Conference (GECCO) on
2018, etc. His research interests include search based software engi-
neering, requirement engineering, evolutionary computation, deep
learning.

JifengXuan is a professor at the School of Computer Science,Wuhan
University, China. He received the BSc degree and the PhD degree
from Dalian University of Technology, China. He was previously a
postdoctoral researcher at the INRIA Lille-Nord Europe, France. He
is a reviewer of journals and conferences, including TSE, TOSEM,
TKDE, TEVC, EMSE, ICSE, and FSE. He is a member of the
ACM, IEEE, and CCF. His research interests include software test-
ing and debugging, software data analysis, and search based software
engineering.

Empirical Software Engineering (2020) 25:4547–4584 4583



Affiliations

Yisen Xu1 · FanWu2 ·Xiangyang Jia1 · Lingbo Li2 · Jifeng Xuan1

Yisen Xu
xuyisen@whu.edu.cn

Fan Wu
fan@turintech.ai

Xiangyang Jia
jxy@whu.edu.cn

Lingbo Li
lingbo@turintech.ai

1 School of Computer Science, Wuhan University, Wuhan 430072, China
2 Turing Intelligence Technology Limited, 1 Ropemaker St, London EC2Y 9ST, UK

Empirical Software Engineering (2020) 25:4547–45844584


