
Writing Tests for This Higher-Order Function First
Automatically Identifying Future Callings to Assist Testers

Yisen Xu

School of Computer Science

Wuhan University

Wuhan, China

xuyisen@whu.edu.cn

Xiangyang Jia

School of Computer Science

Wuhan University

Wuhan, China

jxy@whu.edu.cn

Jifeng Xuan
∗

School of Computer Science

Wuhan University

Wuhan, China

jxuan@whu.edu.cn

ABSTRACT
In functional programming languages, such as Scala and Haskell, a

higher-order function is a function that takes one or more functions

as parameters or returns a function. Using higher-order functions

in programs can increase the generality and reduce the redundancy

of source code. To test a higher-order function, a tester needs to

check the requirements and write another function as the test input.

However, due to the complexity of higher-order functions, testing

higher-order functions is a time-consuming and labor-intensive

task. Testers have to spend an amount of manual effort in testing all

higher-order functions. Such testing is infeasible if the time budget

is limited, such as a period before a project release. In this paper,

we propose an automatic approach, namely Phof, which predicts

whether a higher-order function will be called in the future. Higher-

order functions that are most likely to be called should be tested first.

Our approach can assist developers to reduce the number of higher-

order functions under test. In Phof, we extracted 24 features from

source code and logs to train a predictive model based on known

higher-order functions calls.We empirically evaluated our approach

on 2854 higher-order functions from six real-world Scala projects.

Experimental results show that Phof based on the random forest

algorithm and the SMOTE strategy performs well in the prediction

of calls of higher-order functions. Our work can be used to support

the scheduling of limited test resources.

CCS CONCEPTS
• Software and its engineering→ Functional languages;Main-
taining software; Software functional properties.

KEYWORDS
higher-order functions, function calls, test scheduling, Scala pro-

grams

ACM Reference Format:
Yisen Xu, Xiangyang Jia, and Jifeng Xuan. 2019. Writing Tests for This

Higher-Order Function First: Automatically Identifying Future Callings

∗
Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Internetware ’19, October 28–29, 2019, Fukuoka, Japan
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7701-0/19/10. . . $15.00

https://doi.org/10.1145/3361242.3361256

to Assist Testers. In Internetware ’19: Proceedings of the 11th Asia-Pacific
Symposium on Internetware (Internetware ’19), October 28–29, 2019, Fukuoka,
Japan. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3361242.

3361256

1 INTRODUCTION
A higher-order function is a function that takes a function as an

input parameter or returns a function as a result. In functional pro-

gramming languages, such as Scala and Haskell, using higher-order

functions can increase the generality and reduce the redundancy of

source code [1, 19]; meanwhile, translating specific requirements

into higher-order functions can enhance the usability and ease the

collaborative development [14, 20, 25].

Similar to general functions, it is inevitable to test a higher-order

function to improve the quality. However, testing a higher-order

function is difficult. The aim of testing a higher-order function is to

execute paths and trigger hidden faults [24]. Given a higher-order

function under test, a tester has to complete two steps, including

checking the requirements and writing a function as the input. Due

to the complexity of higher-order functions, testing higher-order

functions is a time-consuming and labor-intensive task.

Testing higher-order functions has not attracted adequate atten-

tion from the test community. For manual testing of higher-order

functions, testers are required to confirm the functions that serve

as the input or the output [13]. For automatic testing, many auto-

mated testing tools, such as Quickcheck in Haskell,
1
only support

first-order functions. This makes testing all higher-order functions

infeasible.

Instead of testing all higher-order functions, we consider test-

ing higher-order functions that will be called in the future as a

workaround. We propose a predictive approach, namely Phof,

which identifies whether a higher-order function will be called

in the future. A tester can write test cases for these identified

higher-order functions first. This can reduce the cost of testing

higher-order functions in a limited time budget. In Phof, we ex-

tracted 24 features from source code and logs to train a predictive

model based on known higher-order functions calls.

We conducted empirical evaluation on 2854 higher-order func-

tions from six real-world Scala projects and answered three research

questions. Experimental results show that Phof based on the ran-

dom forest algorithm and the SMOTE strategy perform well in the

prediction of the calls of higher-order functions. We also evaluated

the top-10 features in each project as well as their contributions in

the prediction. Our approach can assist developers to reduce the

number of higher-order functions under test.

1
QuickCheck, http://hackage.haskell.org/package/QuickCheck.

https://doi.org/10.1145/3361242.3361256
https://doi.org/10.1145/3361242.3361256
https://doi.org/10.1145/3361242.3361256
http://hackage.haskell.org/package/QuickCheck.

Internetware ’19, October 28–29, 2019, Fukuoka, Japan Yisen Xu, Xiangyang Jia, and Jifeng Xuan

Application scenario. Given a limited time budget, e.g., the

time before a new release of the project, our approach Phof can

be used to identify whether a higher-order function can be called

in the future. Then a tester can prioritize higher-order functions

under test to avoid testing uncalled ones. Our work can be used

to support the scheduling of limited test resources and reduce the

cost by testers.

This paper makes the following major contributions:

• We proposed an automatic approach, namely Phof, which

predicts whether a higher-order function will be called in

the future;

• We empirically evaluated 2854 higher-order functions from

six real-world Scala projects.

• We investigated three research questions, including the ef-

fectiveness, the imbalance data processing strategies, and

the dominant features.

The rest of this paper is organized as follows. Section 2 shows the

background and motivation of studying the prediction of higher-

order functions calls. Section 3 presents the proposed approach

in our work. Section 4 presents the study setup, including three

research questions and the data preparation. Section 5 describes the

results of our exploratory study. Section 6 discusses the threats to

the validity. Section 7 lists the related work and Section 8 concludes.

2 BACKGROUND AND MOTIVATION
We present the background and the motivation of our work.

2.1 Background
Scala, a programming language that supports both object-oriented

programming and functional programming, is designed to make

up for the deficiencies in the Java language. Scala has a strong

static type system and shares many features of functional program-

ming languages with Standard ML and Haskell, including currying,

type inference, and immutability [21, 28]. Source code written in

Scala is compiled into bytecode and run on a virtual machine. For

the compatibility, Scala programs can directly interact with Java

programs.

As a feature of functional programming, higher-order func-

tions are directly supported in Scala. In a higher-order function,

a function can be used as an input parameter and used as an out-

put. Higher-order functions make the Scala language be used in

many scenarios, including constructing distributed systems and

web projects. For instance, Nystrom et al. [20] has presented a Scala

framework for experimenting with super-compilation techniques;

Twitter has constructed several infrastructures in Scala [8].

Figure 1 shows an excerpt of a real-world higher-order function

subName() in Project scala/scala.2 The higher-order function

subName(), defined inside another function scala.tools.nsc.
symtab.classfile.ClassfileParser.sigToType(), is designed
to get a subset of Class Name. Class Name has the same functions

and fields as Class String, such as the method charAt() and the

field length. The definition of this higher-order function contains

one input parameter and a return type. The only input parameter

isDelimiter() at Line 5 is a first-order function, which receives a

2
Project scala/scala, http://github.com/scala/scala/.

1 private def sigToType(sym: Symbol, sig: Name): Type = {

2 var index = 0

3 val end = sig.length

4 ...

5 def subName(isDelimiter: Char => Boolean): Name = {

6 val start = index

7 while (! isDelimiter(sig.charAt(index))) { index += 1 }

8 sig.subName(start, index)

9 }

10 ...

11 }

Figure 1: Excerpt of a real-world higher-order function
subName() from Class scala.tools.nsc.symtab.classfile.
ClassfileParser in Project scala/scala.

Char object as input and returns a Boolean object. The parameter

isDelimiter() is called at Line 7 to determine whether the Char
object is a delimiter. The return type of the function subName()
at Line 5 is a Name object. The return statement of the function

subName() locates at Line 8.
Testing is an important phase to improve the quality of source

code. ScalaTest, like JUnit in Java, is a testing framework for Scala

and Java testers.
3
Many popular Scala projects, including the six

projects in our study, have deployed ScalaTest to support test man-

agement and execution.

2.2 Motivation
Testing a higher-order function is difficult. To manually write a

test case for a higher-order function, a tester needs to check the

requirements of the function and then write another function as

the input for the higher-order function under test. However, for the

input of a test case, creating a function parameter is different from

creating a primitive parameter (e.g., an integer or a floating-point

number) or an object parameter (an object of a class). The definition

of a function is various. In a study by Selakovic et al. [24], test

cases that are generated by four test generation methods can reach

a low ratio of code coverage in testing higher-order functions in

Javascript. In their study, several basic higher-order functions are

barely tested, including higher-order functions of filter(), map(),
and then().

Resources for testing are limited [5]. Due to the complexity of

higher-order functions, testing higher-order functions is a time-

consuming and labor-intensive task. In a limited time budget, such

as the period before a release, it is infeasible to test all higher-order

functions in a project. Instead of testing all higher-order functions,

we consider testing higher-order functions that will be called in the

future.

Motivated by the cost of testing higher-order functions, we pro-

pose a new approach, namely Phof, which predicts whether a

higher-order function will be called in the future. These higher-

order functions that are most likely to be called can be tested first to

save the cost. Our approach can assist testers to reduce the number

3
ScalaTest, http://scalatest.org/.

http://github.com/scala/scala/
http://scalatest.org/

Writing Tests for This Higher-Order Function First Internetware ’19, October 28–29, 2019, Fukuoka, Japan

Figure 2: Overview of Phof, an automated approach to predicting whether a higher-order function will be called in the future.

of higher-order functions under test and reduce the cost of testing

higher-order functions.

3 PREDICTING CALLINGS FOR
HIGHER-ORDER FUNCTIONS

We presents the overview, the feature extraction, and the learning

algorithm in our proposed approach.

3.1 Overview
We designed Phof, short for Prediction for Higher-Order Functions,

an automatic approach for predicting whether a higher-order func-

tion will be called in the future. The problem of such prediction

can be viewed as a classification problem with binary labels: called

or uncalled. A higher-order function is labeled as called if there

exist one or more callings while a higher-order function is labeled

as uncalled if there are no callings for the function. A tester can

then use our approach to prioritize higher-order functions to save

the cost of testing within a limited time budget.

Figure 2 shows the overview of our proposed approach, Phof.

Phof is designed to predict whether a higher-order function will be

called in the future. The input of Phof is source code and logs of a

Scala project. The output of Phof is the binary predicted result of a

new higher-order function. To build a predictive model in Phof, we

extracted 24 features from source code and logs. Then, a predictive

model is built based on higher-order functions with known callings

and is used to predict results for new higher-order functions.

3.2 Feature Extraction
To build our model, we extracted 24 features from source code and

logs of Scala programs. These 24 features are divided into three

groups: Group CS – 16 features related to code statements (CS01 to

CS16), Group CP – 5 features related to function properties (CP01

to CP05), and Group CG – 3 features extracted from git logs (CG01

to CG03). Table 1 list the 24 features in Phof. In Group CS, we used

the 16 features to represent the structure information of higher-

order functions. In Group CP, features related to function properties,

such as the Cyclomatic complexity and the executable lines of code,

are used to reveal the overall state of a higher-order function. In

Group CG, we distilled three features from commits logs since the

information of commits may be critical for the calls of higher-order

functions.

Given the source code of a Scala project, we extracted features

of Group CS and Group CP by converting source files into Abstract

Synthetic Trees (ASTs). Then we traversed ASTs to collect features

related to code statements and function properties, such as the

number of for statement, the Executable Lines of Code (eLoC),

and the Cyclomatic complexity of higher-order functions. The Cy-
clomatic complexity is a software metric of linearly independent

paths [18]. We also counted the number of code style warnings in

a higher-order function (see Section 4.1 for implementation).

For Group CG, i.e., features related to logs, we extracted logs from

the version control system and collected all historical commits that

related to changes of higher-order functions. Then we traversed

these commits and collected features of authors and commits [27].

3.3 Learning Algorithms
Phof uses a classification algorithm to build a predictive model. We

evaluated four algorithms: RandomForest – an ensemble algorithm

based on decision trees, CART – a classification and regression

tree, SVM – a support vector machine algorithm, and MLP – a

multi-layer perceptron algorithm.

In machine learning, a decision tree is a typical classifier. Each

branch represents the outcome of a classification determination

and each leaf represents the classification result. RandomForest is

a classifier that contains multiple decision trees, and the category

of its output is determined by the mode of the output category

of individual trees [2]. SVM is a binary classifier, whose purpose

is to find a hyperplane to segment samples [6]. The principle of

segmentation is to maximize the intervals and finally transform it

into a convex quadratic programming problem. MLP is a forward-

structured artificial neural network that maps a set of input vectors

to a set of output vectors.

Internetware ’19, October 28–29, 2019, Fukuoka, Japan Yisen Xu, Xiangyang Jia, and Jifeng Xuan

Table 1: Summary of 24 extracted features in three groups in Phof.

Feature Description
Group CS – features related to code statements
CS01 Whether the higher-order function has primitive types of parameters

CS02 Whether the higher-order function has a parameter that is a higher-order function

CS03 Whether the higher-order function has generic parameters, such as the parameter A in a class

definition class Stack[A]
CS04 Whether the higher-order function has a return statement

CS05 Number of parameters in the definition of the higher-order function

CS06 Number of for statements in the higher-order function

CS07 Number of while statements in the higher-order function

CS08 Number of else statements in the higher-order function

CS09 Number of match statements in the higher-order function

CS10 Number of if statements in the higher-order function

CS11 Number of assign statements in the higher-order function

CS12 Number of lambda expressions in the higher-order function

CS13 Number of try statements in the higher-order function

CS14 Number of apply statements in the higher-order function

CS15 Number of local variables that can be changed in the higher-order function

CS16 Number of local variables that cannot be changed in the higher-order function

Group CP – features related to function properties
CP01 Executable lines of code (eLoC) of the higher-order function

CP02 Cyclomatic complexity of the higher-order function

CP03 Number of style warnings in the higher-order function

CP04 Containing input functions or output functions in the higher-order function (three values: functions

only as input, functions only as output, and functions as both input and output)

CP05 Modifier of the higher-order function (public, protected, private, or default)

Group CG – features related to logs
CG01 Name of the first author of the higher-order function

CG02 Number of commits to source code of the higher-order function

CG03 Number of authors of the higher-order function

The distribution of called and uncalled higher-order functions

is imbalanced. For most of the machine learning algorithms, the

issue of data imbalance may cause incorrect prediction results [11].

Thus, we adopted the Synthetic Minority Oversampling TEchnique

processing (SMOTE) strategy to address the data imbalance issue.

The SMOTE strategy is a typical oversampling technique [4] of

analyzing the minority samples and adding new samples to the

data set according to the minority samples to achieve the data

balance.

4 EXPERIMENTAL SETUP
In this section, we introduce the data preparation and the design of

three research questions.

4.1 Data Preparation
Our study aims to build a learning model to predict whether a

higher-order function will be called in the future, i.e., called or

uncalled. We mined six Scala projects and extracted features for

the construction of classifiers. Experimental results are publicly

available.
4

Our work is to train a learning model, which requires sufficient

data of higher-order functions. Thus, we select six widely-used and

open-sourced Scala repositories. All these projects are highly stared

on GitHub and contain a large number of higher-order functions.

We considered that a project with many stars indicates that the

quality of the project is identified by many developers. Table 2 lists

the summary of six Scala projects in the study.

We employed the static analysis tool SemanticDB to extract se-

mantic structure, such as types and function signatures. SemanticDB
is a Scala library to analyze and compile Scala source code.

5
We

leveraged SemanticDB to extract definitions and callings of func-

tions. First, we used SemanticDB to create a semantic database for

each project. Second, we collected the definitions of higher-order

functions from the semantic database if the parameters or return

values of the definition contain a function. Third, we filtered out

4
Phof, http://cstar.whu.edu.cn/p/phof/.

5
SemanticDB, http://scalameta.org/docs/semanticdb/guide.html.

http://cstar.whu.edu.cn/p/phof/
http://scalameta.org/docs/semanticdb/guide.html

Writing Tests for This Higher-Order Function First Internetware ’19, October 28–29, 2019, Fukuoka, Japan

Table 2: Summary of six Scala projects in the study. For the sake of space, each project will be denoted by its abbreviation in
following sections.

Project Abbr. #Stars eLoC #Higher-order functions Project description

scala/scala scala 11.4k 143.6k 829 The Scala programming language

playframework/playframework framework 11.0k 41.5k 109 A web framework for building scalable applications with Java and Scala

scalaz/scalaz scalaz 4.1k 35.4k 1219 A Scala library for functional programming

sbt/sbt sbt 3.8k 34.9k 264 A building tool for Scala, Java, and other languages

lampepfl/dotty dotty 3.3k 387.1k 204 A Scala compiler

twitter/scalding scalding 3.1k 29.6k 229 A Scala API for a Java tool named cascading

Total 36.7k 672.1k 2854

override higher-order functions that are defined by default to imple-

ment an abstract function in a super class in the Scala language. The

reason for such filtering is as follows, it is required to implement

an abstract function with an override function in a sub class, but

calling this override function is not required. Fourth, we extracted

callings of higher-order functions by matching the function defini-

tions. Based on these steps, we are able to extract definitions and

calls of all higher-order functions in each project.

We leveraged static analysis tools Scalamata
6
and ScalaStyle

7
to

extract features in Group CS and Group CP (Section 3.2). Scalameta
is a Scala library to parse Scala files and construct ASTs. ScalaStyle
is an off-the-shelf checking tool of the code style; we leveraged it to

extract the number of code style warnings in higher-order functions.

For features in Group CG, we first used the Git API to extract Git

logs and collected all historical commits that related to the changes

of higher-order functions [29]. Then we traversed these commits

and collected the author information, including names, e-mails, and

timestamps of all commits that related to higher-order functions

[16]. Then we extracted the first author of the higher-order function

according to the timestamp.

We labeled all higher-order functions in two categories: called
and uncalled. Figure 3 presents the distribution of higher-order

functions in both categories of each project. Three out of six projects

have imbalanced distributions of categories, including Projects

Scala, sbt, and dotty.
In our experiment, we used Scikit-learn for the implementation of

machine learning algorithms. Scikit-learn is an off-the-shelf library

in Python for machine learning.
8

4.2 Evaluation Metrics
In the evaluation, we used four metrics, including precision, recall,

F-measure, and accuracy. We define the four evaluation metrics

based on True Positive (TP), False Positive (FP), True Negative (TN),

and False Negative (FN). We list the definitions as follows,

• TP : # of higher-order functions in Category called that are

predicted as called;
• FP : # of higher-order functions in Category uncalled that

are predicted as called;
• TN : # of higher-order functions in Category uncalled that

are predicted as uncalled;
• FN : # of higher-order functions in Category called that are

predicted as uncalled.

6
Scalameta, http://scalameta.org/.

7
ScalaStyle, http://scalastyle.org/.

8
Scikit-learn, http://scikit-learn.org/stable/.

347

658

188

62

136 149

482

561

76
47

93
55

0

100

200

300

400

500

600

700

scala scalaz sbt framework scalding dotty

N
um

be
r

of
 h

ig
he

r-
or

de
r

fu
nc

tio
ns

Project

called
uncalled

Figure 3: Distribution of called and uncalled higher-order
functions in each project.

Then we define the precision, recall, F-measure, and accuracy as

follows,

Precision(called) =
TP

TP + FP
, Precision(uncalled) =

TN

TN + FN

Recall(called) =
TP

TP + FN
, Recall(uncalled) =

TN

TN + FP

F -measure(called) =
2 × Precision(called) × Recall(called)

Precision(called) + Recall(called)

F -measure(uncalled) =
2 × Precision(uncalled) × Recall(uncalled)

Precision(uncalled) + Recall(uncalled)

Accuracy =
TP +TN

TP +TN + FP + FN

4.3 Research Questions
We designed three Research Questions (RQs) to analyze the effec-

tiveness of our proposed approach, including the prediction the

callings of higher-order functions, the imbalance data processing

strategies, and the feature correlation of callings of higher-order

functions.

RQ1. How effective is our approach in predictingwhether
a higher-order function will be called in future?

We build a predictive model to predict whether a higher-order

function can be called in the future. Machine learning algorithms

http://scalameta.org/
http://scalastyle.org/
http://scikit-learn.org/stable/

Internetware ’19, October 28–29, 2019, Fukuoka, Japan Yisen Xu, Xiangyang Jia, and Jifeng Xuan

Table 3: Precision, recall, F-measure, and accuracy of prediction results for each of six project.

Project Algorithm called uncalled AccuracyPrecision Recall F-measure Precision Recall F-measure
scala RandomForest 0.549 0.556 0.557 0.581 0.330 0.410 0.558

DecisionTree 0.471 0.714 0.564 0.297 0.193 0.231 0.453

SVM 0.530 0.581 0.542 0.519 0.463 0.474 0.521

MLP 0.644 0.476 0.489 0.441 0.169 0.378 0.499

scalaz RandomForest 0.720 0.593 0.650 0.705 0.654 0.678 0.680

DecisionTree 0.671 0.442 0.488 0.564 0.725 0.605 0.584

SVM 0.753 0.579 0.652 0.655 0.803 0.720 0.691
MLP 0.703 0.538 0.649 0.559 0.436 0.553 0.637

sbt RandomForest 0.813 0.618 0.694 0.718 0.762 0.735 0.738
DecisionTree 0.876 0.378 0.479 0.602 0.900 0.708 0.639

SVM 0.757 0.571 0.649 0.662 0.825 0.734 0.698

MLP 0.812 0.644 0.745 0.709 0.831 0.747 0.617

framework RandomForest 0.763 0.579 0.651 0.726 0.578 0.637 0.692
DecisionTree 0.800 0.223 0.343 0.566 0.863 0.722 0.612

SVM 0.584 0.649 0.608 0.650 0.563 0.591 0.606

MLP 0.704 0.688 0.701 0.679 0.740 0.684 0.670

scalding RandomForest 0.707 0.507 0.584 0.707 0.507 0.584 0.651
DecisionTree 0.867 0.096 0.171 0.522 0.986 0.682 0.541

SVM 0.563 0.551 0.559 0.581 0.597 0.583 0.574

MLP 0.662 0.567 0.568 0.611 0.620 0.618 0.454

dotty RandomForest 0.769 0.578 0.658 0.737 0.752 0.740 0.695

DecisionTree 0.542 0.511 0.523 0.617 0.711 0.638 0.611

SVM 0.789 0.579 0.664 0.658 0.826 0.731 0.702
MLP 0.808 0.752 0.773 0.705 0.793 0.745 0.627

play an important role in the prediction. We evaluate and analyze

the effectiveness of four machine learning algorithms in RQ1.

RQ2. Can imbalanced data processing strategies improve
prediction results?

The data imbalance of two categories of higher-order functions

may lead to inaccurate classification [11]. We examine whether

imbalanced data processing strategies can improve the prediction.

Thus, we analyzed the impact of the SMOTE strategy and two other

imbalanced data processing strategies in RQ2.

RQ3. Which features are more impactful on the predic-
tion results?

Higher-order functions are expected to abstract the usage pat-

terns of functions [12]. The features in Phof are divided into three

groups: code statements, function properties, and logs. In RQ3, we

analyzed which features affect the callings of higher-order func-

tions.

5 EMPIRICAL RESULTS
In this section, we present and analyze the results of three RQs in

our study. The result and findings are listed as follows.

5.1 RQ1. How effective is our approach in
predicting whether a higher-order function
will be called in future?

We aim to analyze the effectiveness of our proposed approach Phof.

Four classification algorithms are used in Phof, including Random-

Forest, CART, SVM, and MLP. In RandomForest, the number of

decision tree is set by default to 6; in CART, the parameter crite-

rion is set to entropy; in SVM, the linear kernel is used inside the

algorithm; in MLP, the number of hidden layers is set to 100. The

SMOTE strategy is combined with each classification algorithm to

eliminate the risk of data imbalance. We used 5-fold cross validation

to evaluate the effectiveness of the experiment. For each project, we

randomly divide the higher-order functions into five equal-sized

folds. Then we built five rounds of experiments. In each round,

one fold is used as a test set and the other four folds are used as

a training set. Then the average of five rounds is reported as the

result.

Table 3 presents the prediction results of each of six projects.

Among four algorithms under evaluation, no algorithm can com-

pletely beat the others for all projects. In six, RandomForest achieves

the highest accuracy in four projects, i.e., scala, sbt, framework, and

scalding; SVM achieves the highest accuracy in two projects. For

the F-measure values, all four algorithms can obtain the highest

values. In Projects sbt and dotty, MLP obtained the highest values

of F-measure for both call and uncalled higher-order functions; in

Project scalaz, SVM obtained the highest values of F-measure. For

called higher-order functions, DecisionTree obtains the highest

precision values in three projects while MLP obtains the highest

recall values in four projects. For uncalled higher-order functions,

RandomForest obtains the highest precision values in all six projects

while DecisionTree and SVM obtain the highest recall values in

three projects, respectively.

As shown in Table 3, RandomForest with SMOTE achieves the

highest values of accuracy in most of projects. Then we counted the

Writing Tests for This Higher-Order Function First Internetware ’19, October 28–29, 2019, Fukuoka, Japan

Table 4: Average of precision, recall, F-measure, and accuracy of prediction results for all the six projects.

Algorithm called uncalled AccuracyPrecision Recall F-measure Precision Recall F-measure
RandomForest 0.720 0.572 0.632 0.696 0.597 0.631 0.670
DecisionTree 0.705 0.394 0.428 0.527 0.730 0.598 0.573

SVM 0.663 0.585 0.612 0.621 0.679 0.639 0.632

MLP 0.722 0.611 0.646 0.617 0.598 0.621 0.584

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Precision
(called)

Recall
(called)

F-measure
(called)

Precision
(uncalled)

Recall
(uncalled)

F-measure
(uncalled)

Accuracy

NoStrategy
SMOTE
ADASYN

Figure 4: Average results of the random forest algorithm us-
ing three strategies of imbalanced data processing.

average of six projects in Table 4. As shown in Table 4, RandomFor-

est obtains the best accuracy and the best precision for uncalled
higher-order functions; SVM achieves the best F-measure for un-
called ones. All algorithms except SVM achieve the precision over

0.700 for called higher-order functions. MLP achieves the highest

precision of 0.722, the highest recall of 0.611, and the highest F-

measure of 0.646 for called higher-order functions. From Table 4

and Table 3, we find that the evaluation values of four algorithms

differ greatly. RandomForest performs well in the accuracy while

MLP performs well in the precision and recall of called higher-

order functions.

Finding 1. Our proposed approach, Phof is effective in predict-

ing whether a higher-order function will be called in the future.

RandomForest as well as other algorithms, i.e., DecisionTree, SVM,

and MLP, can achieve high values in the evaluation.

5.2 RQ2. Can imbalanced data processing
strategies improve prediction results?

In Section 4.1, we showed that called and uncalled higher-order

functions are not balanced. Thus, we evaluate the effectiveness of

imbalanced data processing techniques. We used three imbalanced

data processing strategies, SMOTE, ADAptive SYNthetic sampling

(ADASYN), and no strategy (called NoStrategy for short), to solve

the imbalanced problem. As mentioned in Section 3.3, the SMOTE

strategy is a typical oversampling technique [4].ADASYN is another

typical oversampling technique [10]. The key idea of ADASYN is

to weight different minority samples according to the learning

difficulty of data. ADASYN can synthesize data for the minority

class that are difficult to be modeled.

Figure 4 shows values of precision, reall, F-measure, and accuracy

of RandomForest with three sampling strategies in six projects. As

Table 5: Lists of top-10 dominant features for each project

Project scala scalaz sbt framework scalding dotty
1 CP02 † CP01 CP01 CP05 CP05 CS05

2 CG03 CP02 CP02 CG01 CS10 CS04

3 CS11 CS09 CS03 CS16 CP02 CS01

4 CP03 CS12 CS16 CS11 CP03 CP01
5 CS02 CS16 CS09 CS14 CS03 CP05
6 CP04 CS14 CS14 CG02 CS09 CS09
7 CG01 CS10 CS10 CG03 CS08 CS08

8 CS10 CS03 CP04 CP04 CS15 CP02
9 CP01 CP05 CS01 CS05 CS05 CS11

10 CS09 CP03 CS04 CP03 CG02 CS02

† We labeled features that appear for four times or more in bold.

shown in the Figure 4, SMOTE achieves the maximum value in the

precision for both categories, the recall and F-measure for uncalled
higher-order functions, and the accuracy. NoStrategy achieves the

maximum value in the recall and the F-measure for called higher-

order functions while ADASYN does not achieve any maximum

value in the evaluation.

Finding 2. Experiments show that the SMOTE strategy is an

effective strategy of the imbalanced data processing. Comparedwith

using no strategy, the precision and the accuracy can be improved

with SMOTE.

5.3 RQ3. Which features are more impactful on
the prediction results?

We tend to find out features that affect the prediction of higher-

order functions callings. In each project, we use Pearson correlation

coefficient to evaluate the correlation between a feature and the

predicted result. Then we selected the top-10 features, which cor-

relate the most with the prediction results. We referred to these

top-10 features as dominant features [9].
In statistics, Pearson correlation coefficient is used to measure

the degree of the linear correlation between two variables X and Y
and the coefficient value is between -1 and 1 [7]. The absolute value

of a coefficient is 1 if X and Y can completely linearly correlated

and a coefficient is 0 if there exists no linear correlation. A positive

coefficient indicates that Y increases when X increases; a negative

coefficient indicates that Y decreases when X increases.

For each project in our experiment, the Pearson correlation co-

efficient between each feature and the predicted result are calcu-

lated; then we sorted all features according to the absolute value

of Pearson correlation coefficient. Table 5 presents the lists of top-

10 dominant features in each project. As shown in Table 5, CP01

Internetware ’19, October 28–29, 2019, Fukuoka, Japan Yisen Xu, Xiangyang Jia, and Jifeng Xuan

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

scala scalaz sbt framework scalding dotty

Pe
rc

en
ta

ge
 o

f f
ea

tu
re

 g
ro

up
s i

n
ea

ch
 p

ro
je

ct

Project

CS CP CG

Figure 5: Percentage of feature groups in each project.

(eLoC of higher-order functions) appears in four out of six projects,

i.e., scala, scalaz, sbt, and dotty. In Projects scalaz and sbt, CP01

correlates the most with the predicted result; meanwhile, CP02

(Cyclomatic complexity of higher-order functions) and CS09 (the

number of match statements in higher-order functions) appear in

five out of six projects. CP03 (the number of style warnings in

higher-order functions), CP05 (the modifier), and CS10 (the num-

ber of if statements) appear in four out of six projects, and CP05

shows the greatest correlation with the predicated result in Projects

framework and scalding.

From Table 5, we can observe that CP01, CP02, CP03, CP05, CS09,

and CS10 are highly correlative with the prediction result. As re-

ported in Table 1, CP01, CP02, CP03, and CP05 belong to Group

CP, i.e., features related to function properties; CS09 and CS10 be-

long to Group CS (features related to code statements). We found

that the number of match statements (CS09) and the number of

if statements (CS10) are used to calculate the Cyclomatic com-

plexity of higher-order functions (CS02). This observation shows

that properties of higher-order functions, such as the eLoC and the

Cyclomatic complexity, have highly affected the prediction result,

i.e., the callings of higher-order functions.

To analyze the features that affect the prediction result, we cal-

culated the distribution of the top-10 dominant features in each

project. Figure 5 presents the percentage of each group of features

that belong to the top-10 dominant features in each project. Features

of Group CS are the majority of the five projects in six projects,

except for Project framework. One possible reason is that Group

CS contains 16 features, which are the majority of all extracted

features.

0.354

0.667

0.333

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

CS CP CG

R
at

io
 o

f t
op

-1
0

fe
at

ur
es

Groups of features

Figure 6: Ratio of dominant features in each feature group
in each project.

We then counted the ratio of dominant features in each feature

group as follows,

ratio(feature group) =
of dominant features from the group

of features in the group × # of projects

where dominant features of each project are directly extracted from

Table 5. Figure 6 presents ratio of dominant features in each feature

group. We can observe that the ratio of Group CP is the highest,

i.e., 0.667, and the ratio of Group CG is the lowest, i.e., 0.333. This

observation is consistent with the conclusion of Table 5: features

in Group CP have more influence on the prediction result than

features in the other two groups.

We evaluated whether the dominant features can represent all

features in the prediction. Table 6 presents the comparison between

the top-10 dominant features and all the 24 features. As shown in

Table 6, only one out of six projects, i.e., scalding, can obtain better

prediction with the dominant features than with all features. In

Project scalding, all the evaluation metrics of prediction with the

top-10 dominant features are better than the prediction with 24

features. In other five projects under evaluation, the accuracy with

top-10 dominant features are lower than the accuracy with all 24

features.

Finding 3. Two features from the group of code statements and

four features from the group of function properties highly correlate

with the prediction result. Meanwhile, the top-10 dominant features

can partially represent all 24 features in the prediction.

6 THREATS TO VALIDITY
We discuss the threats to the validity to our work in three dimen-

sions.

Writing Tests for This Higher-Order Function First Internetware ’19, October 28–29, 2019, Fukuoka, Japan

Table 6: Comparison between the whole set of 24 features and the top-10 features on higher-order functions from six projects.

Project Features called uncalled AccuracyPrecision Recall F-measure Precision Recall F-measure
scala All 24 0.549 0.556 0.557 0.581 0.330 0.410 0.558

Top-10 0.534 0.625 0.574 0.558 0.365 0.438 0.543

scalaz All 24 0.720 0.593 0.650 0.705 0.654 0.678 0.680
Top-10 0.656 0.614 0.633 0.643 0.657 0.649 0.645

sbt All 24 0.813 0.618 0.694 0.718 0.762 0.735 0.738
Top-10 0.763 0.634 0.687 0.710 0.804 0.751 0.722

framework All 24 0.763 0.579 0.651 0.726 0.578 0.637 0.692
Top-10 0.731 0.596 0.650 0.631 0.517 0.563 0.684

scalding All 24 0.707 0.507 0.584 0.707 0.507 0.584 0.651

Top-10 0.757 0.715 0.734 0.755 0.758 0.755 0.744
dotty All 24 0.769 0.578 0.658 0.737 0.752 0.740 0.695

Top-10 0.723 0.545 0.609 0.651 0.764 0.694 0.654

Threats to construct validity. In our study, we extracted 24

features from source code and logs. It is possible to design better

features to characterize the prediction problem. Meanwhile, we

chose four typical machine learning algorithms and three typical

strategies of imbalanced data processing according to our experi-

ence. These may exist several algorithms or processing strategies

that can achieve better results. The design of this work is to assist

testers for better scheduling higher-order functions in manual test-

ing. However, the evaluation does not count the effort by testers.

Instead, we considered that higher-order functions that will be

called later should be tested first. This provides the scenario of

using our approach.

Threats to internal validity. In machine learning, the setting

of parameters is important: the predictionmay be hurt by the setting

of parameters. In our study, we set parameters according to the API

document of the Scikit-learn tool. These parameter values are not

well-tuned in our dataset. A better solution to the parameter values

is to conduct a large-scale experiment and tune parameter values

accordingly.

Threats to external validity. Our study selected six Scala

projects from GitHub. Such selection may hurt the generality of our

study. We do not claim that our prediction result can be generalized

to other Scala projects or even other functional languages, such as

Haskell. This results in a threat to the generality.

7 RELATEDWORK
We present the related work in two categories, the studying on

higher-order functions and the studying on Scala programs.

7.1 Studies on Scala Programs
The Scala programming language has received much attention. Ex-

isting works have studied the Scala language and Scala programs.

Reynders et al. [22] defined a multilevel language, Scalagna, which

combines the existing Scala JVM and the JavaScript ecosystem

into a single programming model. Nystrom [20] designed a Scala

framework to implement efficient super-compilers for arbitrary

programming languages. In the field of symbolic execution, Cassez

and Sloane [3] proposed ScalaSMT, which supports the Satisfiability

Modulo Theory (SMT) solving in Scala. In the field of education,

van der Lippe et al. [25] used the Scala programming language and

the WebLab online learning system to examine quizzes by students.

Kroll et al. [14] proposed a framework that supports straightfor-

ward and simplified translation between formal specifications and

executable code.

7.2 Studies on Higher-Order Functions
The higher-order function is a feature of the Scala language. Testing

and validating higher-order functions is difficult due to the com-

plexity of higher-order functions. To test a higher-order function, a

tester has to understand the requirements and then writes an input

function for the higher-order function under test. Pieter et al. [13]

proposed a method to test higher-order functions by mimicking and

controlling the structure of functions. This method can find errors

that have not occurred in higher-order functions for several years.

Selakovic et al. [24] proposed LambdaTester, which uses feedback

techniques to automatically generate test cases for higher-order

functions in JavaScript. For the validation of higher-order functions,

Madhavan et al. [17] proposed a novel method to specify and verify

the resource utilization of higher-order functional programs using

lazy evaluation and memory. Voirol et al. [26] proposed a validator

for pure higher-order functional Scala programs; this validator sup-

ports the validation of arbitrary function types and arbitrary nested

anonymous functions. Rusu and Arusoaie [23] embedded a higher

order functional language with imperative features into the Maude

framework to verify higher-order functional programs. Lincke and

Schupp [15] proposed a transformation that converts higher-order

functions to lower-order functions by mapping higher-order types

to lower-order types.

Higher-order functions are employed as a resolution for compli-

cated problems. Bassoy and Schatz [1] used optimized higher-order

functions to quickly calculate tensors, and their optimized higher-

order functions achieved 68% of the maximum throughput of the

Internetware ’19, October 28–29, 2019, Fukuoka, Japan Yisen Xu, Xiangyang Jia, and Jifeng Xuan

Intel Core i9-7900X. Nakaguchi et al. [19] treated services as func-

tions and used higher-order functions to combine these services

without creating new services.

Different from existing works, we designed an automated ap-

proach to the prediction of future callings of higher-order functions.

Instead of directly testing higher-order functions, we identified

higher-order functions that need to be tested to assist the manual

testing by testers.

8 CONCLUSIONS
Manually testing a higher-order function is difficult. In this paper,

we proposed an approach, namely Phof, which can predict whether

a higher-order function will be called in the future. This approach

can help testers to identify higher-order functions that need to

be tested first. Our work can save the time cost of testing higher-

order functions in a limited time budget. Our study shows that,

the random forest algorithm with the SMOTE strategy in Phof is

effective in the prediction.

In future work, we plan to extract new features such as semantic

features, to enhance the prediction performance. We also plan to

conduct a study to understand reasons for uncalled higher-order

functions, including the reason from source code and the reason

from developers or testers.

ACKNOWLEDGMENTS
The work is supported by the National Key R&D Program of China

under Grant No. 2018YFB1003901, the National Natural Science

Foundation of China under Grant Nos. 61872273 and 61502345, and

the Technological Innovation Projects of Hubei Province under

Grant No. 2017AAA125.

REFERENCES
[1] Cem Bassoy and Volker Schatz. 2018. Fast Higher-Order Functions for Tensor

Calculus with Tensors and Subtensors. In Computational Science - ICCS 2018 -
18th International Conference, Wuxi, China, June 11-13, 2018, Proceedings, Part I.
639–652. https://doi.org/10.1007/978-3-319-93698-7_49

[2] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (2001), 5–32. https:

//doi.org/10.1023/A:1010933404324

[3] Franck Cassez and Anthony M. Sloane. 2017. ScalaSMT: satisfiability modulo

theory in Scala. In Proceedings of the 8th ACM SIGPLAN International Symposium
on Scala, SCALA@SPLASH 2017, Vancouver, BC, Canada, October 22-23, 2017.
51–55. https://doi.org/10.1145/3136000.3136004

[4] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.

2002. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res.
16 (2002), 321–357. https://doi.org/10.1613/jair.953

[5] Zongzheng Chi, Jifeng Xuan, Zhilei Ren, Xiaoyuan Xie, and He Guo. 2017. Multi-

Level Random Walk for Software Test Suite Reduction. IEEE Comp. Int. Mag. 12,
2 (2017), 24–33. https://doi.org/10.1109/MCI.2017.2670460

[6] Corinna Cortes and Vladimir Vapnik. 1995. Support-Vector Networks. Machine
Learning 20, 3 (1995), 273–297. https://doi.org/10.1007/BF00994018

[7] Leo Egghe and Loet Leydesdorff. 2009. The relation between Pearson’s correlation

coefficient r and Salton’s cosine measure. JASIST 60, 5 (2009), 1027–1036. https:

//doi.org/10.1002/asi.21009

[8] Marius Eriksen. 2012. Effective Scala. http://twitter.github.io/effectivescala.

[9] Yongfeng Gu, Jifeng Xuan, Hongyu Zhang, Lanxin Zhang, Qingna Fan, Xiaoyuan

Xie, and Tieyun Qian. 2019. Does the fault reside in a stack trace? Assisting

crash localization by predicting crashing fault residence. Journal of Systems and
Software 148 (2019), 88–104. https://doi.org/10.1016/j.jss.2018.11.004

[10] Haibo He, Yang Bai, Edwardo A. Garcia, and Shutao Li. 2008. ADASYN: Adaptive

synthetic sampling approach for imbalanced learning. In Proceedings of the Inter-
national Joint Conference on Neural Networks, IJCNN 2008, part of the IEEE World
Congress on Computational Intelligence, WCCI 2008, Hong Kong, China, June 1-6,
2008. 1322–1328. https://doi.org/10.1109/IJCNN.2008.4633969

[11] Haibo He and Edwardo A. Garcia. 2009. Learning from Imbalanced Data. IEEE
Trans. Knowl. Data Eng. 21, 9 (2009), 1263–1284. https://doi.org/10.1109/TKDE.

2008.239

[12] Olof Karlsson and Philipp Haller. 2018. Extending Scala with records: design,

implementation, and evaluation. In Proceedings of the 9th ACM SIGPLAN Interna-
tional Symposium on Scala, SCALA@ICFP 2018, St. Louis, MO, USA, September 28,
2018. 72–82. https://doi.org/10.1145/3241653.3241661

[13] Pieter W. M. Koopman and Rinus Plasmeijer. 2006. Automatic Testing of Higher

Order Functions. In Programming Languages and Systems, 4th Asian Symposium,
APLAS 2006, Sydney, Australia, November 8-10, 2006, Proceedings. 148–164. https:

//doi.org/10.1007/11924661_9

[14] Lars Kroll, Paris Carbone, and Seif Haridi. 2017. Kompics Scala: narrowing

the gap between algorithmic specification and executable code (short paper).

In Proceedings of the 8th ACM SIGPLAN International Symposium on Scala,
SCALA@SPLASH 2017, Vancouver, BC, Canada, October 22-23, 2017. 73–77. https:

//doi.org/10.1145/3136000.3136009

[15] Daniel Lincke and Sibylle Schupp. 2012. From HOT to COOL: transforming

higher-order typed languages to concept-constrained object-oriented languages.

In International Workshop on Language Descriptions, Tools, and Applications, LDTA
’12, Tallinn, Estonia, March 31 - April 1, 2012. 3. https://doi.org/10.1145/2427048.

2427051

[16] Ping Ma, Danni Xu, Xin Zhang, and Jifeng Xuan. 2019. Changes Are Similar:

Measuring Similarity of Pull Requests That Change the Same Code in GitHub. In

Software Engineering and Methodology for Emerging Domains, Zheng Li, He Jiang,
Ge Li, Minghui Zhou, andMing Li (Eds.). Springer Singapore, Singapore, 115–128.

[17] Ravichandhran Madhavan, Sumith Kulal, and Viktor Kuncak. 2017. Contract-

based resource verification for higher-order functions with memoization. In

Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, Paris, France, January 18-20, 2017. 330–343. http://dl.acm.

org/citation.cfm?id=3009874

[18] Thomas J. McCabe. 1976. A Complexity Measure. IEEE Trans. Software Eng. 2, 4
(1976), 308–320. https://doi.org/10.1109/TSE.1976.233837

[19] Takao Nakaguchi, Yohei Murakami, Donghui Lin, and Toru Ishida. 2016. Higher-

Order Functions for Modeling Hierarchical Service Bindings. In IEEE International
Conference on Services Computing, SCC 2016, San Francisco, CA, USA, June 27 -
July 2, 2016. 798–803. https://doi.org/10.1109/SCC.2016.110

[20] Nathaniel Nystrom. 2017. A Scala framework for supercompilation. In Proceedings
of the 8th ACM SIGPLAN International Symposium on Scala, SCALA@SPLASH
2017, Vancouver, BC, Canada, October 22-23, 2017. 18–28. https://doi.org/10.1145/

3136000.3136011

[21] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth,

Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and

Matthias Zenger. 2004. An overview of the Scala programming language. Technical
Report. Technical Report IC/2004/64, EPFL Lausanne, Switzerland.

[22] Bob Reynders, Michael Greefs, Dominique Devriese, and Frank Piessens. 2018.

Scalagna 0.1: towards multi-tier programming with Scala and Scala.js. In Con-
ference Companion of the 2nd International Conference on Art, Science, and
Engineering of Programming, Nice, France, April 09-12, 2018. 69–74. https:

//doi.org/10.1145/3191697.3191731

[23] Vlad Rusu and Andrei Arusoaie. 2017. Executing and verifying higher-order

functional-imperative programs in Maude. J. Log. Algebr. Meth. Program. 93
(2017), 68–91. https://doi.org/10.1016/j.jlamp.2017.09.002

[24] Marija Selakovic, Michael Pradel, Rezwana Karim, and Frank Tip. 2018. Test

generation for higher-order functions in dynamic languages. PACMPL 2, OOPSLA
(2018), 161:1–161:27. https://doi.org/10.1145/3276531

[25] Tim van der Lippe, Thomas Smith, Daniël Pelsmaeker, and Eelco Visser. 2016.

A scalable infrastructure for teaching concepts of programming languages in

Scala with WebLab: an experience report. In Proceedings of the 7th ACM SIGPLAN
Symposium on Scala, SCALA@SPLASH 2016, Amsterdam, Netherlands, October 30
- November 4, 2016. 65–74. https://doi.org/10.1145/2998392.2998402

[26] Nicolas Voirol, Etienne Kneuss, and Viktor Kuncak. 2015. Counter-example

complete verification for higher-order functions. In Proceedings of the 6th ACM
SIGPLAN Symposium on Scala, Scala@PLDI 2015, Portland, OR, USA, June 15-17,
2015. 18–29. https://doi.org/10.1145/2774975.2774978

[27] Tao Wang, Yang Zhang, Gang Yin, Yue Yu, and Huaimin Wang. 2018. Who Will

Become a Long-Term Contributor?: A Prediction Model based on the Early Phase

Behaviors. In Proceedings of the Tenth Asia-Pacific Symposium on Internetware,
Internetware 2018, Beijing, China, September 16-16, 2018. 9:1–9:10. https://doi.org/

10.1145/3275219.3275223

[28] Yisen Xu, Fan Wu, Xiangyang Jia, Lingbo Li, and Jifeng Xuan. 2019. Mining the

Use of Higher-Order Functions: An Exploratory Study on Scala Programs. In

Proceedings of the National Software Application Conference of China (NASAC
2019). to appear.

[29] Xin Zhang, Yang Chen, Yongfeng Gu, Weiqin Zou, Xiaoyuan Xie, Xiangyang

Jia, and Jifeng Xuan. 2018. How do Multiple Pull Requests Change the Same

Code: A Study of Competing Pull Requests in GitHub. In 2018 IEEE International
Conference on Software Maintenance and Evolution, ICSME 2018, Madrid, Spain,
September 23-29, 2018. 228–239. https://doi.org/10.1109/ICSME.2018.00032

https://doi.org/10.1007/978-3-319-93698-7_49
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/3136000.3136004
https://doi.org/10.1613/jair.953
https://doi.org/10.1109/MCI.2017.2670460
https://doi.org/10.1007/BF00994018
https://doi.org/10.1002/asi.21009
https://doi.org/10.1002/asi.21009
http://twitter.github.io/effectivescala
https://doi.org/10.1016/j.jss.2018.11.004
https://doi.org/10.1109/IJCNN.2008.4633969
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1145/3241653.3241661
https://doi.org/10.1007/11924661_9
https://doi.org/10.1007/11924661_9
https://doi.org/10.1145/3136000.3136009
https://doi.org/10.1145/3136000.3136009
https://doi.org/10.1145/2427048.2427051
https://doi.org/10.1145/2427048.2427051
http://dl.acm.org/citation.cfm?id=3009874
http://dl.acm.org/citation.cfm?id=3009874
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/SCC.2016.110
https://doi.org/10.1145/3136000.3136011
https://doi.org/10.1145/3136000.3136011
https://doi.org/10.1145/3191697.3191731
https://doi.org/10.1145/3191697.3191731
https://doi.org/10.1016/j.jlamp.2017.09.002
https://doi.org/10.1145/3276531
https://doi.org/10.1145/2998392.2998402
https://doi.org/10.1145/2774975.2774978
https://doi.org/10.1145/3275219.3275223
https://doi.org/10.1145/3275219.3275223
https://doi.org/10.1109/ICSME.2018.00032

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Motivation

	3 Predicting Callings for Higher-Order Functions
	3.1 Overview
	3.2 Feature Extraction
	3.3 Learning Algorithms

	4 Experimental Setup
	4.1 Data Preparation
	4.2 Evaluation Metrics
	4.3 Research Questions

	5 Empirical Results
	5.1 RQ1. How effective is our approach in predicting whether a higher-order function will be called in future?
	5.2 RQ2. Can imbalanced data processing strategies improve prediction results?
	5.3 RQ3. Which features are more impactful on the prediction results?

	6 Threats to Validity
	7 Related Work
	7.1 Studies on Scala Programs
	7.2 Studies on Higher-Order Functions

	8 Conclusions
	Acknowledgments
	References

