
Xu YS, Jia XY, Wu F et al. Automatically identifying calling-prone higher-order functions of Scala programs to assist testers.

JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 35(6): 1278–1294 Nov. 2020. DOI 10.1007/s11390-020-

0526-y

Automatically Identifying Calling-Prone Higher-Order Functions of

Scala Programs to Assist Testers

Yi-Sen Xu1, Xiang-Yang Jia1, Member, CCF, Fan Wu2, Lingbo Li2, and
Ji-Feng Xuan1,∗, Member, CCF, ACM, IEEE

1School of Computer Science, Wuhan University, Wuhan 430072, China
2Turing Intelligence Technology Limited, London, EC2Y 9ST, U.K.

E-mail: {xuyisen, jxy}@whu.edu.cn; {fan, lingbo}@turintech.ai; jxuan@whu.edu.cn

Received April 11, 2020; revised October 31, 2020.

Abstract For the rapid development of internetware, functional programming languages, such as Haskell and Scala, can

be used to implement complex domain-specific applications. In functional programming languages, a higher-order function

is a function that takes functions as parameters or returns a function. Using higher-order functions in programs can increase

the generality and reduce the redundancy of source code. To test a higher-order function, a tester needs to check the

requirements and write another function as the test input. However, due to the complex structure of higher-order functions,

testing higher-order functions is a time-consuming and labor-intensive task. Testers have to spend an amount of manual

effort in testing all higher-order functions. Such testing is infeasible if the time budget is limited, such as a period before

a project release. In practice, not every higher-order function is actually called. We refer to higher-order functions that

are about to be called as calling-prone ones. Calling-prone higher-order functions should be tested first. In this paper,

we propose an automatic approach, namely Phof, which predicts whether a higher-order function of Scala programs will

be called in the future, i.e., identifying calling-prone higher-order functions. Our approach can assist testers to reduce the

number of higher-order functions of Scala programs under test. In Phof, we extracted 24 features from source code and

logs to train a predictive model based on known higher-order function calls. We empirically evaluated our approach on

4 832 higher-order functions from 27 real-world Scala projects. Experimental results show that Phof based on the random

forest algorithm and the Synthetic Minority Oversampling Technique Processing strategy (SMOTE) performs well in the

prediction of calls of higher-order functions. Our work can be used to support the scheduling of limited test resources.

Keywords higher-order function, testing tool, test management, Scala program, internetware

1 Introduction

Internetware, a widely-used software paradigm,

connects domain applications via Internet-based

computing [1, 2]. For the rapid development of inter-

netware, functional programming languages, such as

Haskell, Scala, and Lisp, can be used to implement

complex domain-specific applications. As an important

feature of functional programming languages, higher-

order functions are a family of functions that take func-

tions as inputs or return functions. Due to the high

scalability, algorithms written in higher-order functions

can be generalized by changing their input or output

functions [3, 4]. Moreover, higher-order functions are

derived from the field of mathematics. Thus, using

higher-order functions can make source code concise

and precise [5, 6].

Unit testing, i.e., testing a function, is to execute

Yi-Sen Xu et al.: Automatically Identifying Calling-Prone Higher-Order Functions 1279

paths in a function to detect hidden faults [7, 8]. Many

current testing tools, such as JUnit 1○ in Java and

QuickCheck in Haskell 2○, can support the test mana-

gement and execution of first-order functions (i.e., non-

higher-order functions). However, it is not easy to test

higher-order functions with these testing tools. We list

two difficulties of testing higher-order functions as fol-

lows. First, a higher-order function receives one or

more functions as parameters. Testers have to write

or call functions as parameters, which are expected to

change program states of the higher-order function un-

der test [7]. Second, a higher-order function can return

a function as output. A returned function is expected

to be consistent with the requirements. Testers have

to fully check and understand requirements and then

write tests for higher-order functions. Therefore, man-

ually testing of higher-order functions becomes a time-

consuming and labor-intensive task.

To save the time of testers in testing higher-order

functions, we propose a view that testers can first test

those higher-order functions that are likely to be called

in the future within a limited budget. We refer to these

functions likely to be called as calling-prone. That is,

in a limited budget, instead of testing all higher-order

functions, testers only need to test those higher-order

functions that will be called in the future. To this end,

we propose a predictive approach Phof to identify-

ing calling-prone higher-order functions and evaluate

this approach on Scala programs. Phof is a predictive

model that is trained on known higher-order function

calls. In Phof, we extract 24 features from source code

and logs to characterize whether a higher-order function

is calling-prone.

We conduct an empirical evaluation on 4 832 higher-

order functions from 27 real-world Scala projects and

answer four research questions, including effectiveness,

imbalanced data processing, impactful features, and ef-

ficiency. Experimental results show that Phof based

on the random forest algorithm and the Synthetic

Minority Oversampling Technique Processing strategy

(SMOTE) performs well in the prediction of calling-

prone higher-order functions and reaches the accuracy

of 0.803. The results indicate that SMOTE is effective

among all techniques of imbalanced data processing un-

der evaluation. We use Pearson correlation coefficient

to rank the top-10 features most relevant to higher-

order function calls in each project. The results sug-

gest that the top-10 features can be used to partially

represent the whole set of all features, but cannot fully

replace the original set. The efficiency result reports

that the average time cost is 473 seconds and can be

accepted. Our proposed approach can assist testers to

prioritize higher-order functions under test and save the

cost of testing.

Application Scenario. Given a limited time bud-

get, e.g., the time before a new release of the project,

our approach Phof can be used to identify whether a

higher-order function can be called in the future. Then

a tester can prioritize higher-order functions under test

to avoid testing uncalled ones. Our work can be used

to support the scheduling of limited test resources and

reduce the cost of testers.

Extension. This paper is an extension of our previ-

ous work [9]. In this extension, we add new data pro-

cessing of code clones, an extended experiment on 27

real-world Scala projects, and a detailed analysis of em-

pirical results with new results of impactful features

and efficiency. The new data processing of code clones

can improve the reliability of function data via filter-

ing out 50 sets of cloned functions. The experiment is

extended from the original six projects to 27 projects

and improves the generality of the proposed approach.

The experimental result shows that the average accu-

racy without SMOTE is increased from 0.670 to 0.757,

compared with our previous work. The analysis on im-

pactful features shows that dominant features can par-

tially represent the whole set of all features; the analysis

on efficiency confirms that the average time cost is 473

seconds and suggests that our approach is efficient.

This paper makes the following major contributions.

• We propose an automatic approach, namely

Phof, which predicts whether a higher-order function

will be called in the future. This approach is the

first work that employs function features to prioritize

higher-order functions for testers.

• We empirically evaluate 4 832 higher-order func-

tions from 27 real-world Scala projects. We find that:

the proposed approach is effective and the accuracy

reaches 0.803; the imbalanced data processing is use-

ful for the effectiveness while feature selection does not

improve the result; the time cost of our approach is 473

seconds on average.

The rest of this paper is organized as follows. Sec-

tion 2 shows the background and motivation of studying

the prediction of higher-order function calls. Section 3

presents the proposed approach in our work. Section 4

1280 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

presents the study setup, including four research ques-

tions and data preparation. Section 5 describes the re-

sults of our exploratory study. Section 6 discusses the

threats to the validity. Section 7 lists related work and

Section 8 concludes the paper.

2 Background and Motivation

In this section, we present the background and the

motivation of our work.

2.1 Background

Scala is a programming language that supports both

object-oriented programming and functional program-

ming. Scala contains a powerful static type system and

shares many features of functional programming lan-

guages with Standard ML and Haskell, including cur-

rying, type inference, and immutability [10]. The de-

sign of Scala is to make up for the deficiencies of the

Java language. Source code written in Scala is compiled

into bytecodes and runs on a virtual machine. For the

compatibility, Scala programs can directly use libraries

of Java programs.

As a feature of functional programming, Scala di-

rectly supports higher-order functions. In higher-order

functions, functions can be used as input parameters

or as outputs. Higher-order functions make the Scala

programs useful in many scenarios, including construct-

ing distributed systems and web projects. For in-

stance, Nystrom [11] presented a Scala framework for ex-

perimenting with super-compilation techniques; Twit-

ter has moved several basic frameworks from Ruby to

Scala 3○.

Fig.1 shows an excerpt of a real-world higher-order

function subName() in project scala/scala 4○. The

higher-order function subName(), defined inside an-

other function ClassfileParser.sigToType(), is designed

to get a subset of Class Name. Class Name has the

same functions and fields as Class String, such as the

method charAt() and the field length. The definition

of this higher-order function contains one input para-

meter and a return type. The only input parameter

isDelimiter() at line 5 is a first-order function, which

receives a Char object as input and returns a Boolean

object. The parameter isDelimiter() is called at line 7

to determine whether the Char object is a delimiter.

The return type of the function subName() at line 5 is

a Name object. The return statement of the function

subName() locates at line 8.

Fig.1. Excerpt of a real-world higher-order function subName()
from Class scala.tools.nsc.symtab.classfile.ClassfileParser in Pro-
ject scala/scala.

Testing is an important phase to improve the qua-

lity of source code. ScalaTest, like JUnit in Java, is a

testing framework for Scala and Java testers 5○. Many

popular Scala projects, including the 27 projects in our

study, have deployed ScalaTest to support test mana-

gement and execution.

2.2 Motivation

Testing higher-order functions is difficult. For man-

ually testing, to write a test case for a higher-order

function, a tester needs to check the requirements of

the function and then write another function as an in-

put or output for the higher-order function being tested.

However, for the input of a test case, creating a function

parameter is different from creating a primitive para-

meter (e.g., an integer or a floating-point number) or an

object parameter (an object of a class). For automat-

ically testing, a study by Selakovicet al. [7] shows test

cases generated by four test generation methods can

reach higher code coverage when testing higher-order

functions in JavaScript. In their study, several basic

higher-order functions were tested, including higher-

order functions of filter(), map(), and then().

The resources available for testing are limited. Due

to the complexity of the internal structure of higher-

order functions, testing higher-order functions is a time-

consuming and labor-intensive task. In a limited bud-

get (such as the time period before release), it is in-

Yi-Sen Xu et al.: Automatically Identifying Calling-Prone Higher-Order Functions 1281

feasible to test all higher-order functions in a project.

Instead of testing all higher-order functions, we con-

sider testing higher-order functions that will be called

in the future.

Motivated by the cost of testing higher-order func-

tions, we propose a new approach, namely Phof, which

predicts whether a higher-order function will be called

in the future. These higher-order functions that are

most likely to be called can be tested first to save the

cost. Our approach can assist testers to reduce the

number of higher-order functions under test and reduce

the cost of testing higher-order functions.

3 Predicting Callings for Higher-Order

Functions

We show the overview, the feature extraction, and

the learning algorithm of our proposed approach.

3.1 Overview

We refer to higher-order functions that are likely to

be called in the future as calling-prone ones. In this

paper, we design Phof, which is an abbreviation for

Prediction for Higher-Order Functions. Phof is an

automatic method of identifying calling-prone higher-

order function. The problem of such identification can

be viewed as a classification problem with binary la-

bels: called or uncalled. If there is one or more calls

to a higher-order function, the higher-order function is

labeled as called, and if there is no call for the higher-

order function, the higher-order function is labeled as

uncalled. A tester can then use our approach to prior-

itize higher-order functions to save the cost of testing

within a limited time budget.

Fig.2 shows the overview of our proposed approach

Phof. Phof aims to predict whether a higher-order

function is calling-prone. The input of Phof is source

code and logs of a Scala project. The output of Phof is

the binary prediction result of a new higher-order func-

tion. To build a predictive model in Phof, we extract

24 features from source code and logs of Scala programs.

Then we build a predictive model based on the higher-

order functions with known calls and apply the model

to predict results for new higher-order functions.

3.2 Feature Extraction

To build our model, we extract 24 features from

source code and logs of Scala programs. These 24 fea-

tures are divided into three groups: group CS — 16

features related to code statements (CS01 to CS16),

group CP — 5 features related to function properties

(CP01 to CP05), and group CG — 3 features extracted

from git logs (CG01 to CG03). Table 1 lists the 24

features in Phof. In group CS, we use the 16 features

to represent the structure information of higher-order

functions. In group CP, features related to function

properties, such as the cyclomatic complexity and the

executable lines of code, are used to reveal the overall

state of a higher-order function. In group CG, we distill

three features from commit logs since the information

of commits may be critical for the calls of higher-order

functions. Note that our study is conducted via intra-

project evaluation; thus, the names of authors could be

viewed as enumerated values.

Given the source code of a Scala project, we ex-

tract features of group CS and group CP by convert-

ing source files into abstract synthetic trees (ASTs),

and then traverse ASTs to collect features related to

Source

Code

Logs

Source

Code

Logs

Feature

Extraction

Feature

Extraction

Model

Building

Prediction

Results

Predictive

Model

Known

Higher-Order

Functions

New

Higher-Order

Functions

Deployment

Training

Fig.2. Overview of Phof, an automated approach to predicting whether a higher-order function will be called in the future.

1282 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

Table 1. Summary of 24 Extracted Features in Three Groups in Phof

Yi-Sen Xu et al.: Automatically Identifying Calling-Prone Higher-Order Functions 1283

4.1 Data Preparation

Our study aims to build a learning model to pre-

dict whether a higher-order function will be called

in the future, i.e., called or uncalled. We mined 27

Scala projects and extracted features for the construc-

tion of classifiers. Datasets in this paper are publicly

available 6○.

Our work is to train a learning model, which re-

quires sufficient data for higher-order functions. Thus,

we selected 27 widely-used and open-sourced Scala

repositories. The main steps of project selection are

listed as follows. First, we sorted all Scala reposito-

ries in GitHub according to the stars 7○. We consi-

dered that a repository with many stars indicates that

the quality of the repository is identified by many

developers. We selected top-100 repositories with the

most stars. Among these repositories, we removed

three repositories, including fpinscala/fpinscala

(a supplement material of practices in a book),

scala-exercises/scala-exercises (exercises for

many libraries of Scala), and jacksu/utils4s (learning

materials for Scala and Spark) since these repositories

are not software projects. Second, we leveraged Se-

manticDB, a tool of static program analysis, to extract

definitions and callings of functions 8○. Third, we lever-

aged SourcererCC [22], a tool of token-based code clone

detection, to detect the code clone in higher-order func-

tions. We filtered out code clone groups in higher-order

functions and selected the repositories that contain

more than 50 higher-order functions as the repositories

in the study. Table 2 shows the 4 832 higher-order func-

tions from 27 Scala projects in the study. We present

the steps of data processing as follows.

Higher-Order Function Identification. We employed

the static analysis tool SemanticDB to extract the se-

mantic structure, such as types and function signa-

tures. Then we collected definitions and callings of

functions. SemanticDB is a Scala library to analyze and

compile Scala source code. The main steps to extract

higher-order functions are as follows. First, we used

SemanticDB to create a semantic database for each

project. Second, we collected the definitions of higher-

order functions from the semantic database if parame-

ters or return values of the definition contain a function.

Third, we filtered out override higher-order functions

that are defined by default to implement an abstract

function in a super class in the Scala language. The

reason for such filtering is as follows. It is required to

implement an abstract function with an override func-

tion in a sub class, but calling this override function is

not required. Fourth, we extracted callings of higher-

order functions by matching the function definitions.

Therefore, we are able to extract definitions and calls

of all higher-order functions in each project.

Code Clone Removal. Code clone is common in

large software repositories. To avoid the impact of code

clone on the experimental results, we leveraged Sourcer-

erCC, proposed by Sajnani et al. [22], to detect the

code clone of higher-order functions in Scala projects.

SourcererCC is a state-of-the-art tool of token-based

code clone detection. SourcererCC employs tokens to

represent code fragments and collects the frequency of

each token. To detect code clones, SourcererCC ob-

tains the similarity between two pieces of code via cal-

culating the ratio between the frequencies of the same

tokens and the frequencies of all involved tokens. This

makes SourcererCC efficient in detecting similar code

pairs in large-scale codebases [23]. In our study, we set

the threshold of SourcererCC to 0.99, i.e., higher-order

functions with the similarity greater than 0.99 will be

considered as code clone groups. The reason for choos-

ing 0.99 as the threshold is to fully remove the same

code clones. From the 27 projects in the study, 50 clone

groups are detected and filtered out. Each code clone

group contains two or more higher-order functions. We

further analyzed whether one group of code clones are

called in the same calling-proneness, i.e., higher-order

functions in a group are all called (or uncalled) by other

functions. We checked all clone groups and find that

only six out of 50 clone groups are not called in the

same calling-proneness. This suggests that most of code

clones of higher-order functions show the same calling-

proneness.

Feature Extraction. We leveraged static analysis

tools Scalamata 9○ and ScalaStyle 10○ to extract features

in group CS and group CP (Subsection 3.2). Scalameta

is a Scala library to parse Scala files and construct

ASTs. ScalaStyle is an off-the-shelf checking tool of

the code style; we leveraged it to extract the number of

1284 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

Table 2. Summary of 27 Scala Projects in the Study

Yi-Sen Xu et al.: Automatically Identifying Calling-Prone Higher-Order Functions 1285

gory uncalled that are predicted as uncalled;

• FN : number of higher-order functions in Cate-

gory called that are predicted as uncalled.

Then we define the precision, recall, F1 (short for F -

measure), and accuracy as follows:

Precision(called) =
TP

1286 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

Table 3. Precision, Recall, F -Measure, and Accuracy of Prediction Results for the Top 10 Projects

Yi-Sen Xu et al.: Automatically Identifying Calling-Prone Higher-Order Functions 1287

Table 4. Average of Precision, Recall, F -Measure, and Accuracy of Prediction Results for All the 27 Projects

1288 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

P
r
e
c
is
io
n
(c

a
ll
ed

)
R
e
c
a
ll
(c

a
ll
ed

)
F
-M
e
a
s
u
r
e
(c

a
ll
ed

)
P
r
e
c
is
io
n
(u

n
ca

ll
ed

)
R
e
c
a
ll
(u

n
ca

ll
ed

)
F
-M
e
a
s
u
r
e
(u

n
ca

ll
ed

)

A
cc

u
ra

cy

NoStrategy SMOTE ADASYN

Fig.4. Average results of the random forest algorithm using three
strategies of imbalanced data processing in 27 projects.

In statistics, Pearson correlation coefficient is used

to measure the degree of the linear correlation between

two variables X and Y and the coefficient value is be-

tween −1 and 1 [28]. The absolute value of a coefficient

is 1 if X and Y can completely linearly correlate and

a coefficient is 0 if there exists no linear correlation.

A positive coefficient indicates that Y increases when

X increases; a negative coefficient indicates that Y de-

creases when X increases.

For each project in the experiment, the Pearson cor-

relation coefficient between each feature and the pre-

dicted result is calculated; then we sort all features

according to the absolute value of Pearson correlation

coefficient. Table 5 presents the list of top-10 domi-

nant features in the top 10 projects, which contain the

most higher-order functions among all projects. CP01

(eLoC of higher-order functions) appears in 21 out of

27 projects. In projects scalaz, zio, sbt, util, and

gatling, CP01 correlates the most with the predicted

result; meanwhile, CP04 (containing input functions or

output functions in the higher-order function) appears

in 18 out of 27 projects. CP04 shows the greatest cor-

relation with the predicated result in project finagle.

Table 5. List of Top-10 Dominant Features for the Top 10 Projects

Yi-Sen Xu et al.: Automatically Identifying Calling-Prone Higher-Order Functions 1289

From Table 5, we observe that CP01 and CP04 are

highly correlative with the prediction result. As re-

ported in Table 1, CP01 and CP04 belong to group CP,

i.e., features related to function properties. This obser-

vation shows that properties of higher-order functions,

such as the eLoC, have highly affected the prediction

result, i.e., the callings of higher-order functions.

To analyze features that affect the prediction result,

we calculate the distribution of the top-10 dominant

features in the top 10 projects. Fig.5 presents the per-

centage of each group of features that belong to the

top-10 dominant features in each project. Features of

group CS are the majority of all 27 projects. One possi-

ble reason is that group CS contains 16 features, which

are the majority of all extracted features.

We then count the ratio of dominant features in each

feature group as follows:

ratio(group) =
dominant features from the group

1290 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

based on the predictive ability in the attribute subset

and the correlation [31].

0.359

0.600

0.420

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

CS CP CG

R
a
ti
o
 o

f
T
o
p
-
1
0
 F

e
a
tu

re
s

Fig.6. Ratio of dominant features in each feature group in each
project.

Fig.7 presents the evaluation values of precision, re-

call, F -measure, and accuracy of random forest with

feature selection in 27 projects. In Fig.7, results with

the information gain algorithm and results with the Cf-

sSubset algorithm are worse than those with no feature

selection algorithm (Default). From Fig.7, we can find

that using feature selection cannot lead to significant

differences, compared with the prediction with no fea-

ture selection.

Finding 3. Two features, CP01 (eLoC of higher-

order functions) and CP04 (containing input functions

or output functions in the higher-order function), highly

correlate with the prediction result. The top-10 domi-

nant features can partially represent all 24 features in

the prediction. Meanwhile, the results obtained using

feature selection algorithms are not better than those

without feature selection.

5.4 RQ4. How Efficient Is Our Approach to

Prediction?

We calculate the time cost of Phof in each project

with the random forest algorithm and the SMOTE

strategy. The reason is that the random forest algo-

rithm and the SMOTE strategy achieve the highest ac-

curacy in the prediction in Subsection 5.1 and Subsec-

tion 5.2. We show the time cost of feature extraction,

model training, and model deployment for each project:

the cost of feature extraction is the time of extracting

features from source code and logs; the cost of model

training is the time of training the random forest al-

gorithm in the prediction; and the cost of model de-

ployment is the time of deploying the trained model to

the test set. Let Textraction, Ttraining, and Tdeployment be

the time cost of feature extraction, model training, and

model deployment, respectively. The total time cost of

Phof is called Ttotal.

Table 6. Comparison Between the Whole Set of 24 Features and the Top-10 Features on Higher-Order Functions from the Top 10
Projects

Yi-Sen Xu et al.: Automatically Identifying Calling-Prone Higher-Order Functions 1291

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
r
e
c
is
io
n
(c

a
ll
ed

)

R
e
c
a
ll
(c

a
ll
ed

)
F
-M
e
a
s
u
r
e
(c

a
ll
ed

)

F
-M
e
a
s
u
r
e
(u

n
ca

ll
ed

)

P
r
e
c
is
io
n
(u

n
ca

ll
ed

)
R
e
c
a
ll
(u

n
ca

ll
ed

)

A
c
c
u
r
a
c
y

Default Information Gain CfsSubset

Fig.7. Average results of random forest algorithm with feature
selection in 27 projects.

Table 7 presents the time cost of Phof in seconds

with the random forest algorithm and the SMOTE

strategy. As shown in Table 7, the average time of

Phof in the top 10 projects is 472.795 seconds, which

consists of 472.708 seconds for feature extraction, 0.084

seconds for model training, and 0.003 seconds for model

deployment. This result suggests that our proposed

method is efficient in identifying calling-prone higher-

order functions.

Table 7. Time Cost of Feature Extraction, Model Training, and
Model Deployment of Phof in the Top 10 Projects

1292 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

guage and Scala programs. Reynders et al. [32] defined

a multilevel language, Scalagna, which combines the

existing Scala JVM and the JavaScript ecosystem into

a single programming model. Nystrom [11] designed a

Scala framework to implement efficient super-compilers

for arbitrary programming languages. In the field of

symbolic execution, Cassez and Sloane [33] proposed

ScalaSMT, which supports the Satisfiability Modulo

Theory (SMT) solving in Scala. In the field of edu-

cation, van der Lippe et al. [3] used the Scala program-

ming language and the WebLab online learning system

to examine quizzes by students. Kroll et al. [4] proposed

a framework that supports straightforward and simpli-

fied the translation between formal specifications and

executable code.

7.2 Studies on Higher-Order Functions

The higher-order function is a feature of the Scala

language. Higher-order functions are employed as a res-

olution for complicated problems. Xu et al. [34] con-

ducted an empirical study on the use of higher-order

functions and analyzed the Scala code in 35 open-source

projects. Bassoy and Schatz [5] used optimized higher-

order functions to quickly calculate tensors, and their

optimized higher-order functions achieved 68% of the

maximum throughput of the Intel Core i9-7900X. Nak-

aguchi et al. [6] treated services as functions and used

higher-order functions to combine these services with-

out creating new services.

Testing and validating higher-order functions is dif-

ficult due to the complexity of higher-order functions.

To test a higher-order function, a tester has to under-

stand the requirements and then writes an input func-

tion for the higher-order function under test. Koopman

and Plasmeijer [35] proposed a method to test higher-

order functions by mimicking and controlling the struc-

ture of functions. This method can find errors that

have not occurred in higher-order functions for sev-

eral years. Selakovic et al. [7] proposed LambdaTester,

which uses feedback techniques to automatically gene-

rate test cases for higher-order functions in JavaScript.

For the validation of higher-order functions, Madhavan

et al. [36] proposed a novel method to specify and ver-

ify the resource utilization of higher-order functional

programs using lazy evaluation and memory. Voirol et

al. [37] proposed a validator for pure higher-order func-

tional Scala programs; this validator supports the vali-

dation of arbitrary function types and arbitrary nested

anonymous functions. Rusu and Arusoaie [38] embed-

ded a higher order functional language with imperative

features into the Maude framework to verify higher-

order functional programs. Lincke and Schupp [39] pro-

posed a transformation that converts higher-order func-

tions to lower-order functions by mapping higher-order

types to lower-order types.

Different from existing work, we design an auto-

mated approach to the prediction of future callings

of higher-order functions. Instead of directly testing

higher-order functions, we identify higher-order func-

tions that need to be tested to assist the manual testing

by testers.

8 Conclusions

Manually testing a higher-order function is difficult.

In this paper, we proposed an approach to the identi-

fication of calling-prone higher-order functions in Scala

programs, namely Phof. This approach can predict

whether a higher-order function will be called in the

future and help testers to identify higher-order func-

tions that need to be tested first. Our work can save

the time cost of testing higher-order functions in a lim-

ited time budget. Our study showed that the random

forest algorithm with the SMOTE strategy in Phof is

effective in the prediction.

In future work, we plan to extract new features such

as semantic features to enhance the prediction perfor-

mance. A study on understanding dominant features

could help design the feature extraction. We also plan

to investigate the calling-proneness of code libraries

since the libraries are originally designed for callings.

We are about to conduct a study to understand rea-

sons for uncalled higher-order functions, including the

reason from source code and the reason from deve-

lopers or testers. Cross-project evaluation is another

future work. We aim to examine the identification of

calling-proneness higher-order functions beyond a sin-

gle project.

References

[1] Mei H, Huang G, Xie T. Internetware: A software paradigm

for Internet computing. IEEE Computer, 2012, 45(6): 26-

31.

[2] Wang B, Zhao H, Zhang W, Jin Z, Mei H. A problem-driven

collaborative approach to eliciting requirements of Internet-

wares. In Proc. the 2nd Asia-Pacific Symposium on Inter-

netware, November 2010, Article No. 22.

[3] van der Lippe T, Smith T, Pelsmaeker D, Visser E. A scal-

able infrastructure for teaching concepts of programming

languages in Scala with WebLab: An experience report. In

Proc. the 7th ACM SIGPLAN Symposium on Scala, Octo-

ber 2016, pp.65-74.

Yi-Sen Xu et al.: Automatically Identifying Calling-Prone Higher-Order Functions 1293

[4] Kroll L, Carbone P, Haridi S. Kompics Scala: Narrowing

the gap between algorithmic specification and executable

code (short paper). In Proc. the 8th ACM SIGPLAN In-

ternational Symposium on Scala, October 2017, pp.73-77.

[5] Bassoy C, Schatz V. Fast higher-order functions for tensor

calculus with tensors and subtensors. In Proc. the 18th In-

ternational Conference on Computer Science, June 2018,

pp.639-652.

[6] Nakaguchi T, Murakami Y, Lin D, Ishida T. Higher-order

functions for modeling hierarchical service bindings. In

Proc. the 2016 IEEE International Conference on Services

Computing, July 2016, pp.798-803.

[7] Selakovic M, Pradel M, Karim R, Tip F. Test generation for

higher-order functions in dynamic languages. Proceedings of

the ACM on Programming Languages, 2018, 2(OOPSLA):

Article No. 161.

[8] Ma P, Cheng H, Zhang J, Xuan J. Can this fault be de-

tected: A study on fault detection via automated test gene-

ration. Journal of Systems and Software, 2020, 170: Article

No. 110769.

[9] Xu Y, Jia X, Xuan J. Writing tests for this higher-order

function first: Automatically identifying future callings to

assist testers. In Proc. the 11th Asia-Pacific Symposium on

Internetware, October 2019, Article No. 6.

[10] Odersky M, Altherr P, Cremet V, Emir B, Maneth S,

Micheloud S, Mihaylov N, Schinz M, Stenman E, Zenger M.

An overview of the Scala programming language. Technical

Report, École Polytechnique Fédérale de Lausanne, 2006.

https://www.scala-lang.org/docu/files/ScalaOverview.pdf,

September 2020.

[11] Nystrom N. A Scala framework for supercompilation. In

Proc. the 8th ACM SIGPLAN International Symposium

on Scala, October 2017, pp.18-28.

[12] McCabe T J. A complexity measure. IEEE Trans. Software

Eng., 1976, 2(4): 308-320.

[13] Wang T, Zhang Y, Yin G, Yu Y, Wang H. Who will become

a long-term contributor? A prediction model based on the

early phase behaviors. In Proc. the 10th Asia-Pacific Sym-

posium on Internetware, September 2018, Article No. 9.

[14] Quinlan J R. C4.5: Programs for Machine Learning (1st

edition). Morgan Kaufmann, 1993.

[15] Breiman L. Random forests. Machine Learning, 2001,

45(1): 5-32.

[16] Cortes C, Vapnik V. Support-vector networks. Machine

Learning, 1995, 20(3): 273-297.

[17] Hastie T, Tibshirani R, Friedman J H. The Elements of

Statistical Learning: Data Mining, Inference, and Predic-

tion (2nd edition). Springer, 2009.

[18] Pearl J. Bayesian networks: A model of self-activated mem-

ory for evidential reasoning. In Proc. the 7th Conference of

Cognitive Science Society, August 1985, pp.15-17.

[19] Tolles J, Meurer W J. Logistic regression: Relating patient

characteristics to outcomes. The Journal of the American

Medical Association, 2016, 316(5): 533-534.

[20] He H, Garcia E A. Learning from imbalanced data. IEEE

Trans. Knowl. Data Eng., 2009, 21(9): 1263-1284.

[21] Chawla N V, Bowyer K W, Hall L O, Kegelmeyer W P.

SMOTE: Synthetic minority over-sampling technique. J.

Artif. Intell. Res., 2002, 16: 321-357.

[22] Sajnani H, Saini V, Svajlenko J, Roy C K, Lopes C V.

SourcererCC: Scaling code clone detection to big-code. In

Proc. the 38th International Conference on Software Engi-

neering, May 2016, pp.1157-1168.

[23] Rahman W, Xu Y, Pu F, Xuan J, Jia X, Basios M, Kan-

than L, Li L, Wu F, Xu B. Clone detection on large Scala

codebases. In Proc. the 14th IEEE International Workshop

on Software Clones, February 2020, pp.38-44.

[24] Zhang X, Chen Y, Gu Y, Zou W, Xie X, Jia X, Xuan J. How

do multiple pull requests change the same code: A study

of competing pull requests in GitHub. In Proc. the 2018

IEEE International Conference on Software Maintenance

and Evolution, September 2018, pp.228-239.

[25] Hall M A, Frank E, Holmes G, Pfahringer B, Reutemann P,

Witten I H. The WEKA data mining software: An update.

SIGKDD Explorations, 2009, 11(1): 10-18.

[26] He H, Bai Y, Garcia E A, Li S. ADASYN: Adaptive syn-

thetic sampling approach for imbalanced learning. In Proc.

the International Joint Conference on Neural Networks,

June 2008, pp.1322-1328.

[27] Karlsson O, Haller P. Extending Scala with records: De-

sign, implementation, and evaluation. In Proc. the 9th ACM

SIGPLAN International Symposium on Scala, September

2018, pp.72-82.

[28] Egghe L, Leydesdorff L. The relation between Pearson’s cor-

relation coefficient r and Salton’s cosine measure. J. Assoc.

Inf. Sci. Technol., 2009, 60(5): 1027-1036.

[29] Han J, Kamber M, Pei J. Data Mining: Concepts and Tech-

niques (3rd edition). Morgan Kaufmann, 2011.

[30] Wang G, Lochovsky F H. Feature selection with condi-

tional mutual information maximin in text categorization.

In Proc. the 2004 ACM CIKM International Conference on

Information and Knowledge Management, November 2004,

pp.342-349.

[31] Hall M A. Correlation-based feature subset selection for ma-

chine learning [Ph.D. Thesis]. University of Waikato, 1998.

[32] Reynders B, Greefs M, Devriese D, Piessens F. Scalagna 0.1:

Towards multi-tier programming with Scala and Scala.js. In

Proc. the Conference Companion of the 2nd International

Conference on Art, April 2018, pp.69-74.

[33] Cassez F, Sloane A M. ScalaSMT: Satisfiability modulo the-

ory in Scala (tool paper). In Proc. the 8th ACM SIGPLAN

International Symposium on Scala, October 2017, pp.51-55.

[34] Xu Y, Wu F, Jia X, Li L, Xuan J. Mining the use of higher-

order functions: An exploratory study on Scala programs.

Empirical Software Engineering, 2020, 25(6): 4547-4584.

[35] Koopman P W M, Plasmeijer R. Automatic testing of

higher order functions. In Proc. the 4th Asian Symposium

on Programming Languages and Systems, November 2006,

pp.148-164.

[36] Madhavan R, Kulal S, Kuncak V. Contract-based resource

verification for higher-order functions with memoization. In

Proc. the 44th ACM SIGPLAN Symposium on Principles

of Programming Languages, January 2017, pp.330-343.

[37] Voirol N, Kneuss E, Kuncak V. Counter-example com-

plete verification for higher-order functions. In Proc. the 6th

ACM SIGPLAN Symposium on Scala, June 2015, pp.18-29.

[38] Rusu V, Arusoaie A. Executing and verifying higher-order

functional-imperative programs in Maude. Journal of Logic

and Algebraic Methods in Programming, 2017, 93: 68-91.

1294 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

[39] Lincke D, Schupp S. From HOT to COOL: Transform-

ing higher-order typed languages to concept-constrained

object-oriented languages. In Proc. the International Work-

shop on Language Descriptions, Tools, and Applications,

April 2012, Article No. 3.

Yi-Sen Xu is a Master student

at the School of Computer Science,

Wuhan University, Wuhan. He re-

ceived his B.S. degree in software

engineering at School of Computer

Science, Wuhan University, in 2019. His

research interests lie within software

testing and mining software repositories.

Xiang-Yang Jia received his Ph.D.

degree in computer software and theory

from Wuhan University, Wuhan, in

2008. From 2014 to 2015, he was a

visiting researcher with the Dependable

Evolvable Pervasive Software Engi-

neering Group, Politecnico di Milano,

Milan. He is currently a lecturer with

the School of Computer Science, Wuhan University,

Wuhan. His current research interests include symbolic

execution, software analysis, search-based software engi-

neering, and mining software repositories.

Fan Wu is a co-founder of Turing In-

telligence Technology Limited, London.

He holds his Ph.D. degree in software

engineering from University College

London, London. He is renowned for his

work on deep optimization on software

systems, a research field he co-founded.

He serves as a reviewer and program

committee member for prestigious research conferences

and journals, such as JSS, IST, and GECCO. His research

interests include search-based software engineering, genetic

improvement, evolutionary computation, and machine

learning.

Lingbo Li is a co-founder of Turing

Intelligence Technology Limited, Lon-

don. He received his Ph.D. degree in

software engineering from University

College London, London, under the

supervision of Prof. Mark Harman (Fa-

cebook). He was subsequently invited

to take associate professorship at the

School of Computer Science, Wuhan University, Wuhan.

Academically, he serves on the program committee and as

a reviewer for various prestigious research conferences and

journals, such as, JSS IST, IEEE Intelligent Systems, and

GECCO. His research interests include search-based soft-

ware engineering, requirement engineering, evolutionary

computation, and deep learning.

Ji-Feng Xuan is a professor at the

School of Computer Science, Wuhan

University, Wuhan. He received his

B.S. degree in software engineering

and his Ph.D. degree in computational

mathematics from Dalian University of

Technology, Dalian. He was previously

a postdoctoral researcher at the INRIA

Lille-Nord Europe, Lille. He is a reviewer of journals

and conferences, including TSE, TOSEM, TKDE, and

TEVC. His research interests include software testing

and debugging, software data analysis, and search-based

software engineering.

